

Bericht

Orientierende Untersuchung Schiffswerft Otto - Eberhardt

Auftraggeber: Schiffswerft Otto - Eberhardt

Herr Alfred Eberhardt Lange Straße 7- 10

24399 Arnis

Auftragnehmer: UCL Umwelt Control Labor GmbH

Köpenicker Straße 59

24111 Kiel

Auftrag vom: 25.07.2014

Bericht - Seiten: 18 ohne Anlagen

Berichtsverfasser: Dipl.-Ing. U. Soltau

M. Sc. Eike Stage

Kiel, 24.03.2015

i.V. Dipl.-Ing. U. Soltau Sachverständiger gem. §18 BBodSchG

Inhaltsverzeichnis

Kapite	el	Seite
	Zusammenfassung	1
1	Veranlassung und Aufgabenstellung	2
2	Kenntnisstand vor Untersuchungsbeginn	2
2.1	Allgemeine Standortgegebenheiten	2
2.2	Geologie/Hydrogeologie	3
3	Untersuchungskonzept	4
4	Ausgeführte Arbeiten	5
4.1	Feldarbeiten	5
4.1.1	Bodenprobenahmen	5
4.1.2	Grundwasserprobenahmen	6
4.1.3	Einmessen der Untersuchungspunkte	6
4.2	Labortechnische Analytik	6
4.2.1	Bodenanalysen	6
4.2.2	Grundwasseranalysen	7
5	Untersuchungsergebnisse	9
5.1	Untergrundaufbau	9
5.2	Schadstoffgehalte	10
5.3	Bewertung	13
5.3.1	Bewertungsgrundlagen	13
5.3.2	Boden (Festsubstanz)	14
5.3.3	Grundwasser	15
5.4	Zusammenfassende Bewertung / Empfehlung	16
6	Literatur-/Quellenverzeichnis	18

Anlagen

1	Planunterlagen
1.1	Übersichtsplan 1 : 25.000
1.2	Lageplan der Grundwassermessstellen 1:750
1.3	Grundwassergleichenpläne
1.3.1	Grundwassergleichenplan (Stichtag: 18.08.2014) 1 : 500
1.3.2	Grundwassergleichenplan (Stichtag: 17.10.2014) 1 : 500
2	Schichtenverzeichnisse/Ausbauzeichnungen
3	Nivellement
4	Probenahmeprotokolle - Grundwasser
5	Prüfberichte
5.1	Boden
5.2	Grundwasser

Zusammenfassung

Das Betriebsgelände der Schiffswerft Otto - Eberhardt wird seit mehr als 100 Jahren als Werftstandort für den Schiffsbau und die Schiffsreparatur genutzt. Die Nutzung ist nach Altlasten - Leitfaden Schleswig - Holstein als uneingeschränkt altlastenrelevant eingestuft.

Durch eine orientierende Untersuchung gemäß § 3 BBodSchG wurde der aus der Nutzung resultierende Altlastenverdacht durch die UCL Umwelt Control Labor GmbH in enger Abstimmung mit der zuständigen unteren Bodenschutzbehörde geprüft.

Das mit der unteren Bodenschutzbehörde abgestimmte Untersuchungskonzept sah vor, die Standorterkundung primär über den Grundwasserpfad vorzunehmen und durch Vergleich der An- und Abstromwerte auf mögliche Untergrundverunreinigungen rückzuschließen.

Es wurden insgesamt fünf Grundwassermessstellen (GWM 1 bis 5) im Grundwasseran- bzw. abstrom errichtet, ausgewählte Bodenproben auf potentielle Kontaminanten analysiert und Grundwasseruntersuchungskampagnen (August, September, Oktober 2014) ausgeführt.

Das Untersuchungsgelände ist vollständig versiegelt. Unterhalb der Bodenversiegelung stehen zwischen rd. 1 bis 1,7 mächtige, überwiegend mittelsandige Auffüllungsschichten an, die im südlichen Bereich (GWM 1, GWM 3, GWM 5) von Torf und Mudde mit eingeschalteten Sandschichten unterlagert werden. Bei GWM 2 folgt unterhalb der Auffüllung ein mehr als 1 m mächtiger, wasserführender Sand. Der oberflächennahe Grundwasserleiter ist in zwei Segmente bzw. Stockwerke differenziert, von denen das obere die wassererfüllten Auffüllungsschichten oberhalb der oberflächennahen organischen Weichschichten (Torfe / Mudden) und das untere die zur Tiefe folgenden gut durchlässigen Sande sind. Beide Stockwerke stehen in hydraulischem Kontakt.

Im Grundwasseranstrom bei GWM 4 wurde lediglich bei der Beprobung vom 10.09.2014 für die Parameter Blei und Kupfer eine leichte Überschreitung des Geringfügigkeitsschwellenwertes (GFS) festgestellt. Im Grundwasserabstrom zeigten sich Überschreitungen der GFS für einzelne Schwermetalle bzw. für PAK und KW - Index insbesondere im oberen Grundwasserstockwerk (GWM 1 und GWM 3). Das Grundwasser des tieferen Grundwasserstockwerks bei GWM 2 wies Beeinträchtigungen insbesondere durch PAK mit rd. 0,6 µg/l auf.

Die orientierende Untersuchung bestätigt damit den Verdacht auf nutzungsbedingte Einträge in den Untergrund des Untersuchungsgeländes. Es liegt eine Beeinträchtigung der Grundwasserbeschaffenheit insbesondere durch PAK vor. Die Intensität dieser Grundwasserbeeinträchtigung ist insgesamt gering und begründet unter Beachtung der Verhältnismäßigkeit bei gleichbleibenden Standortbedingungen keine weitergehenden Maßnahmen zur Gefahrenbeseitigung.

Es wird empfohlen die vorliegenden Untersuchungsergebnisse durch ein regelmäßiges Grundwassermonitoring an den bestehenden Messstellen GWM 1 bis GWM 5 zu verifizieren.

1 Veranlassung und Aufgabenstellung

Die Schiffswerft Otto - Eberhardt befindet sich in Arnis, Lange Straße 7- 10,direkt an der Schlei. Das Gelände wird seit mehr als 100 Jahren als Werftstandort für den Schiffsbau und die Schiffsreparatur genutzt. Die Nutzung ist als uneingeschränkt altlastenrelevant einzustufen [1].

Seit Oktober 2014 ruht der Betrieb. Es wird eine Umnutzung zur Wohnbebauung ohne Rückbau der Bodenversiegelung geplant.

Durch eine orientierende Untersuchung gemäß § 3 BBodSchG [2] war der aus der Nutzung resultierende Verdacht auf Vorliegen schädlicher Boden und / oder Grundwasserveränderungen zu prüfen. Die UCL Umwelt Control Labor GmbH wurde durch die Schiffswerft Eberhardt beauftragt, die orientierende Untersuchung des Standorts in enger Abstimmung mit der unteren Bodenschutzbehörde des Kreises Schleswig - Flensburg auszuführen.

Grundlage der Beauftragung ist das Angebot der UCL GmbH vom 02.08.2014.

2 Kenntnisstand vor Untersuchungsbeginn

2.1 Allgemeine Standortgegebenheiten

Das rd. 8.000 m² große Untersuchungsgelände grenzt im Südosten direkt an die Schlei an und wird im Nordwesten von der Lange Straße begrenzt.

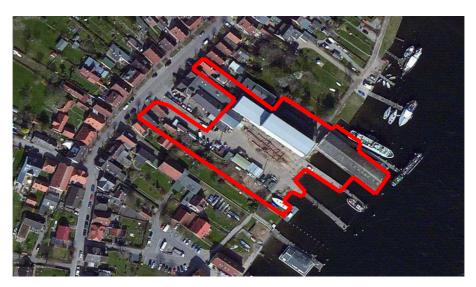


Abb. 1: Schiffswerft Otto - Eberhardt (Untersuchungsgelände)

Auf dem Untersuchungsgelände stehen mehrere Hallen. Eine davon ragt in die Schlei hinein. In den Hallen sind verschieden Werkstätten integriert. So sind auf dem Werftgelände folgende Einrichtungen integriert:

- Lackiererei
- Metallbau
- Bootsbau/ Tischlerei
- Helling
- Schiffshalle

Der Boden ist auf dem gesamten Grundstück auf einer Fläche von ca. 8000 m² versiegelt. Auch die Böden in den Werfthallen bzw. Werkstätten sind vollständig versiegelt.

2.2 Geologie/Hydrogeologie

Das Untersuchungsgebiet ist dem Jungmoränengebiet Schleswig-Holsteins zuzurechnen, das seinen Sedimentaufbau sowie die grundlegenden Oberflächenformen während der letzten Kaltzeit, der Weichselkaltzeit, erhielt. Charakteristisch für diesen Landschaftstyp ist das enge, fast regellose Nebeneinander von Kuppen und Senken innerhalb vorwiegend bindiger glazigener Moränenablagerungen. Die Schlei entstand durch glazifluviatile Erosion aus einem Tunneltal. Die Ablagerung glazifluviatiler Sande und Kiese im Schleisystem bilden die Basis holozäner Sedimente, die heute die Sohle und die Uferregionen der Schlei prägen.

Ein allmählicher Temperaturanstieg im Holozän führte bald zu einem Überschuss an Wasser, das stellenweise nur mühsam über vorhandene Entwässerungssysteme abfließen konnte, mit der Folge, dass in morphologischen Senken bzw. entlang der Abflussrinnen Niedermoore aufwuchsen.

Der lokale Bodenaufbau ist im Untersuchungsgebiet sowohl durch bindige, pleistozäne Moränenablagerungen als auch durch uferbildende holozäne Torfe und Mudden gekennzeichnet. Der erste Grundwasserleiter, der im Untersuchungsgebiet ufernah durch sandige Auffüllungen gebildet wird, steht im hydraulischen kontakt zur Schlei. Landeinwärts bilden pleistozäne Sande oberhalb eines Geschiebemergels den ersten grundwasserleiter.

Das Gefälle des Grundwassers ist im Untersuchungsgebiet nach ESE zur Schlei gerichtet.

3 Untersuchungskonzept

Aufgrund der mehr als 100 Jahre andauernden Nutzung als Werftstandort bestand der Verdacht auf nutzungsbedingte Einträge in den Untergrund. Als potentielle Eintragsschwerpunkte sind die in der Tab. 1 aufgeführten Verdachtsbereiche anzusehen. Als potentielle Kontaminanten sind insbesondere Schwermetalle, organische Lösungsmittel, Bohr-, Schneid- und andere Mineralöle sowie polyzyklische aromatische Kohlenwasserstoffe (PAK), Holzschutzmittel und TBT-Verbindungen zu vermuten.

Tabelle 1: Zusammenstellung der Verdachtsbereiche auf der Schiffswerft Eberhardt

Verdachtsbereich	Potentielle Kontaminanten
Lackiererei	Schwermetalle, org. Lösungsmittel
Metallbau	Bohr- und Schneidöle
Bootsbau/ Tischlerei	PAK, Holzschutzmittel, org. Lösungsmittel
Helling	PAK, Schwermetalle, Mineralöle
Schiffshalle	(PAK), Schwermetalle, org. Lösungsmittel, TBT

Ein Übertritt der o.g. Kontaminanten in den anstehenden Untergrund wird durch die flächige Versiegelung der Bodenoberfläche auf dem Untersuchungsgelände zumindest behindert, ist aber nicht völlig auszuschließen. Dies gilt umso mehr, als dass die aktuelle Versiegelung in früherer Zeit auch Schadstellen und Risse aufgewiesen haben könnte, die mindestens punktuelle Schadstoffeinträge begünstigt haben könnten.

Das Rückhaltevermögen der wasserungesättigten Bodenzone ist aufgrund der sehr geringen Mächtigkeit als vernachlässigbar einzustufen. Das bedeutet, dass in den Boden eingetragene Schadstoffe direkt in den 1. oberflächennahen Grundwasserleiter infiltrieren und entsprechend ihres Löslichkeitspotentials die Grundwasserbeschaffenheit verändern (Wirkungspfad Boden – Grundwasser).

Eine Exposition des Menschen gegenüber potentiell verunreinigtem Boden ist aktuell und auch für die geplante Umnutzung ohne Entsiegelung auszuschließen. Der Wirkungspfad Boden – Mensch ist für die im Rahmen dieser orientierenden Untersuchung auszuführende Gefährdungsabschätzung ohne Belang.

Das mit der unteren Bodenschutzbehörde des Kreises Schleswig - Flensburg abgestimmte Untersuchungskonzept sah deshalb vor, die Standorterkundung primär über den Grundwasserpfad vorzunehmen und durch Vergleich der An- und Abstromwerte auf mögliche Untergrundverunreinigungen rückzuschließen.

Hierzu waren zunächst vier Grundwassermessstellen zu errichten (eine Messstelle im Anstrom und

drei Messstellen im Abstrom des Untersuchungsgeländes) und das Grundwasser auf die Gehalte an

potentiellen Kontaminanten analysieren.

Zusätzlich waren auch ausgewählte Bodenproben aus den Aufschlussbohrungen für den Messstel-

lenbau auf die Gehalte an potentiellen Kontaminanten zu prüfen.

Die ausgeführten Arbeiten und die Untersuchungsergebnisse der orientierenden Untersuchung wa-

ren in einem Abschlussbericht zu dokumentieren und nach Bodenschutz- und Wasserrecht zu bewer-

ten.

4 Ausgeführte Arbeiten

4.1 Feldarbeiten

Die Feldarbeiten umfassen die Ausführung von Kleinrammbohrungen einschließlich der Entnahme

von Bodenproben, sowie die Errichtung von Grundwassermessstellen einschließlich der Entnahme

von Grundwasserproben.

Am 19.08.2014 erfolgte die Ausführung von Kleinrammbohrungen mit Errichtung der Grundwasser-

messstellen GWM 1 bis 4. Am 17.10.2014 wurde eine zusätzliche Grundwassermessstelle (GWM 5)

im Hohlbohrschneckenverfahren eingerichtet. Die Lage der Grundwassermessstellen ist dem Lage-

plan der Anlage 1 zu entnehmen. Der Messstellenausbau ist in den Ausbauzeichnungen der Anlage

2 dokumentiert.

4.1.1 Bodenprobenahmen

Unmittelbar nach dem Ziehen der Kleinrammsonden wurden Bodenproben zur Analyse auf leicht-

flüchtige Stoffe mittels Probenstecher entnommen und in 50 ml Headspace-Vials mit Teflon-Septum

in Methanolvorlage überführt. Erst danach erfolgte die Bodenansprache (Anlage 2) und die schicht-

bzw. horizontbezogene Entnahme von Bodenproben.

Um Fehler durch Schadstoffverschleppungen innerhalb der Bohrung auszuschließen, wurde jeweils

nur der innere Bereich des Bohrkerns beprobt. Das an den Rändern der Sonden befindliche Boden-

material wurde verworfen.

Seite 5

Das entnommene Probenmaterial wurde umgehend in 500 ml - Braungläser gefüllt und luftdicht verschlossen. Die mit der Projektbezeichnung, BS-Nr. und Proben-Nr. gekennzeichneten Bodenproben wurden arbeitstäglich kühl und dunkel in das Labor der UCL transportiert.

4.1.2 Grundwasserprobenahmen

Insgesamt wurden drei Grundwasserprobenahmen an den Grundwassermessstellen ausgeführt. Die Entnahme der Grundwasserproben erfolgte mittels Unterwasserpumpe gemäß DIN 38402-A13. Vor Ort wurden die Parameter Temperatur, pH-Wert, elektrische Leitfähigkeit und Sauerstoffgehalt gemessen. Die Grundwasserprobenahmen sind in den Probenahmeprotokollen der Anlage 4 dokumentiert. Die entnommenen Grundwasserproben wurden jeweils kühl und dunkel in das Labor der UCL nach Kiel transportiert.

4.1.3 Einmessen der Untersuchungspunkte

Alle Bohransatzpunkte und Grundwassermessstellen wurden ausgehend von Gebäudeecken lagetreu eingemessen und in den Lageplan übertragen (s. Anlage 1.2). Die höhenmäßige Einmessung der Bohransatzpunkte erfolgte ausgehend von einem Höhenbezugspunkt mit dem Nivellier Carl Zeiss Ni 2 (Protokolle s. Anlage 3).

4.2 Labortechnische Analytik

4.2.1 Bodenanalysen

Im Labor der UCL GmbH wurden ausgewählte Bodenproben auf die am Standort relevanten Parameter untersucht. Die Analytik auf Tributylzinn wurde durch die GBA, Pinneberg im Unterauftrag der UCL ausgeführt. Eine zusammenfassende Übersicht zu den Parametern der Bodenanalytik gibt Tab. 2.

Die Ergebnisse der labortechnischen Analysen sind als Prüfberichte der Anlage 5.1 beigefügt.

Tabelle 2: Aufstellung der ausgeführten Feststoffanalysen

Probe	Prüfberichts- nummer	Entnahme- tiefe [m]	KW-Index	LCKW / Mono- aromaten	PAK	PCB	Schwer- metalle	ТВТ
BS 1/2	14-36283-001	0,40 - 0,50	1		1	1	1	
BS 1/3	14-36283-002	0,50 - 1,00	1					
BS 1/4	14-36283-003	1,00 - 1,80	1	HS 1/1	1	1	1	
BS 1/5	14-36283-004	1,80 - 2,00	1					
BS 1/7	14-36283-005	2,15 - 2,70						1
BS 2/1	14-36283-006	0,60 - 1,00	1		1	1	1	
BS 2/3	14-36283-007	1,30 - 2,00	1	HS 2/1	1	1	1	
BS 2/4	14-36283-008	2,00 - 2,20	1					
BS 2/5	14-36283-009	2,20 - 3,00	1					
BS 2/7	14-36283-010	3,30 - 4,00		HS 2/2				1
BS 3/1	14-36283-011	0,25 - 0,45	1					
BS 3/2	14-36283-012	0,45 - 0,65	1	HS 3/1	1	1	1	
BS 3/3	14-36283-013	0,65 - 1,20	1					
BS 3/4	14-36283-014	1,20 - 2,25	1	HS 3/2	1	1	1	1
BS 3/5	14-36283-015	2,25 - 3,00	1					
BS 4/2	14-36283-016	0,80 - 1,60	1		1	1	1	1
BS 4/4	14-36283-017	1,60 - 1,85	1		1	1	1	
BS 4/7	14-36283-018	2,35 - 3,00	1	HS 4/3				

KW- Index: Kohlenwasserstoffindex / LCKW: Leichtflüchtige chlorierte Kohlenwasserstoffe / PAK: polyzyklische aromatische Kohlenwasserstoffe / PCB: polychlorierte Biphenyle / Schwermetalle: Blei, Cadmium, Chrom, Kupfer, Nickel, Quecksilber, Zink und Arsen/ TBT: Tributylzinnhybrid

4.2.2 Grundwasseranalysen

Die Grundwasserproben wurden im Labor der UCL GmbH auf die Gehalte an, PAK, PCB, LCKW, dem KW- Index sowie Schwermetallen und Arsen untersucht. Die insgesamt ausgeführten Analysen sind in der Tab. 3 aufgeführt. Die Ergebnisse der chemischen Analysen sind detailliert in den Prüfberichten der Anlage 5.2 dokumentiert.

Tabelle 3: Aufstellung der Ausgeführten Grundwasseranalysen.

Probe	Prüfberichts- nummer	PAK	PCB	LCKW / Mono- aromaten	KW-Index	Schwermetalle + Arsen
GWM 1	14-38024-001	1	1	1	1	1
	14-42067-001	1	1	1	1	1
	14-51091-002	1	-	1	1	1
GWM 2	14-38024-002	1	1	1	1	1
	14-42067-002	1	1	1	1	1
	14-51091-003	1	-	1	1	1
GWM 3	14-38024-003	1	1	1	1	1
	14-42067-003	1	1	1	1	1
	14-51091-005	1	-	1	1	1
GWM 4	14-38024-004	1	1	1	1	1
	14-42067-004	1	1	1	1	1
	14-51091-001	1	-	1	1	1
GWM 5	14-51091-004	1	-	1	1	1

5 Untersuchungsergebnisse

Nachfolgend werden die Untersuchungsergebnisse getrennt nach Boden und Grundwasser dargestellt sowie eine Bewertung nach BBodSchV [3] bzw. LAWA [5] vorgenommen.

5.1 Untergrundaufbau

Die oberflächennahe Geologie des Untergrundes kann mit den Aufschlüssen der Messstellen GWM 1 bis GWM 5 wie folgt beschrieben werden. Unterhalb der Bodenversiegelung stehen zwischen rd. 1 bis 1,7 m mächtige, überwiegend mittelsandige Auffüllungsschichten an, die im süd-lichen Bereich (GWM 1, GWM 3, GWM 5) von Torf und Mudde mit eingeschalteten Sandschichten unterlagert werden. Bei GWM 2 folgt unterhalb der Auffüllung ein mehr als 1 m mächtiger , wasserführender Sand (vergl. Abb. 2).

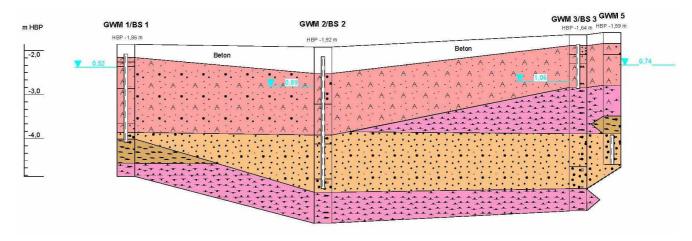


Abb. 2: Untergrundaufbau im südlichen, schleinahen Geländebereich (GWM 1-3)

Im nördlichen Bereich (GWM 4) steht im Liegenden der Auffüllung ein Geschiebemergel mit eingeschalteten Sandschichten an, dessen Basis durch die 4 m tiefe Bohrung nicht erreicht wurde (vergl. Anlage 2).

Grundwasser wurde bei den ufernahen Aufschlüssen (GWM 1 bis 3, GWM 5) in Tiefen von rd. 0,5 bis 1,1 m uGOK erbohrt (vergl. Abb. 2). Im höher gelegenen Zufahrtsbereich (GWM 4) waren die eingeschalteten, 0,2 bis 0,3 m mächtigen Sandschichten wasserführend (vergl. Abb. 3).

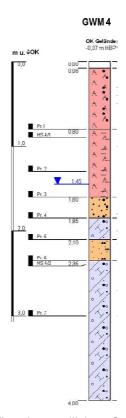


Abb. 3: Untergrundaufbau im nördlichen Geländebereich (GWM 4)

Organoleptische Auffälligkeiten wurden neben Beimengungen an Ziegelbruch in der Auffüllungsschicht der GWM 4 insbesondere bei den abstromigen Messstellen GWM 1 bis 3 und GWM 5 festgestellt. Hier wies die wassergesättigte, künstliche Auffüllung und zum Teil auch die unterlagernden Weichschichten einen Geruch nach Mineralöl auf (vergl. Anlage 2).

5.2 Schadstoffgehalte

Die im Boden gemessenen Gehalte an den nutzungsspezifischen potentiellen Kontaminanten sind in der Tab. 4 zusammengestellt. Für einen ersten Überblick der vorgefundenen Größenordnungen sind in der Tab. 5 zusätzlich auch die Vorsorgewerte der BBodSchV bzw. die Z 0 – Zuordnungswerte der LAGA als Vergleichsmaßstab mit aufgeführt.

In Tab. 5 sind die im Grundwasseran- und abstrom gemessenen Stoffgehalte des Grundwassers zusammen mit den GFS der LAWA als Vergleichsmaßstab zusammengestellt. Eine nähere Erläuterung der Vergleichsmaßstäbe erfolgt in Abschn. 5.3.

Tabelle 4: Gemessene Schadstoffgehalte in der Bodenfestsubstanz und Vorsorgewerte der BBodSchV

		BS 1/2	BS 1/3	BS 1/4	BS 1/5	BS 1/7	BS 2/1	BS 2/3	BS 2/4	BS 2/5	BS 2/7	BS 3/1	BS 3/2	BS 3/3	BS 3/4	BS 3/5	BS 4/2	BS 4/4	BS 4/7	BBoo	gewerte dSchV rte LAGA
Bodenart		Sand	Sand	Sand	Sand	Torf	Sand	Sand	Sand	Sand	Schluff	Sand	L/U								
KW-Index	mg/kg TS	< 50	< 50	< 50	< 50		85	< 50	< 50	< 50		< 50	< 50	230	< 50	< 50	< 50	< 50	< 50	100	100
KW mobil	mg/kg TS	< 50	< 50	< 50	< 50		83	< 50	< 50	< 50		< 50	< 50	220	< 50	< 50	< 50	< 50	< 50	100	100
KW-Typ		-	-	-	-		MD	-	-	-		-	-	MD	-	-	-	-	-		
Naphthalin	mg/kg TS	< 0,1		< 0,1			< 0,1	< 0,1					< 0,1		< 0,1		< 0,1	< 0,1		k.A.	k.A
Benzo[a]pyren	mg/kg TS	0,031		0,405			< 0,01	< 0,01					0,117		0,035		0,018	< 0,01		0,3	1
Σ PAK	mg/kg TS	0,262		5,15			0	0					1,22		0,232		0,078	0		3	10
∑ PCB-6	mg/kg TS	0		0			0	0					0		0		0	0		0,05	0,05
Arsen	mg/kg TS	3,1		5,1			< 2,5	3,3					5,3		7,9		7,3	3,8		10	15
Blei	mg/kg TS	8		19,1			4,1	67					12,6		375		6,7	6,3		40	70
Cadmium	mg/kg TS	< 0,40		0,41			0,62	< 0,40					<0,40		< 0,40		< 0,40	< 0,40		0,4	1
Chrom gesamt	mg/kg TS	10,2		22,6			9	7,7					25,3		13,6		30,3	12,1		30	60
Kupfer	mg/kg TS	20,6		15,1			15,8	10,1					15,9		132		13,5	8,6		20	40
Nickel	mg/kg TS	6,7		13,6			4,8	4,7					16,3		11,3		19,1	9,3		15	50
Quecksilber	mg/kg TS	0,16		0,2			< 0,05	0,34					0,3		1,5		0,061	< 0,05		0,1	0,5
Zink	mg/kg TS	44,5		48,7			21,5	20,1					49,5		35,9		41,1	28,5		60	150
Tributylzinn	μg/kg TS					< 1,0					< 1,0				< 1,0		< 1,0			k.A.	k.A
ΣLHKW	mg/kg TS			0				0			0		0		0				0	1	1
Benzol*	mg/kg TS			< 0,01				0,011			< 0,01		< 0,01		< 0,01				< 0,01	k.A.	k.A
Σ BTEX	mg/kg TS			0				0,039			0		0,029		0,042				0	1	1
∑ Aromaten	mg/kg TS			0				0,146			0		0,085		0,869				0	k.A.	k.A

0,031 Befund liegt unterhalb des Vorsorgewertes BBodSchV bzw. unterhalb des Zuordnungswertes Z 0 der LAGA

Tabelle 5: Gemessene Schadstoffgehalte im Grundwasseran- und abstrom sowie Geringfügigkeitsschwellenwerte der LAWA

		Grund	dwasseran	strom					Grundwas	serabstrom)				
Probenbezeich	nung	GWM 4	GWM 4	GWM 4	GWM 1	GWM 1	GWM 1	GWM 2	GWM 2	GWM 2	GWM 3	GWM 3	GWM 3	GWM 5	
F	robe-Nr.	14-38024-004	14-42067-004	14-51091-001	14-38024-001	14-42067-001	14-51091-002	14-38024-002	14-42067-002	14-51091-003	14-38024-003	14-42067-003	14-51091-005	14-51091-004	GFS
Datum		18.08.14	10.09.14	31.10.14	18.08.14	10.09.14	31.10.14	18.08.14	10.09.14	31.10.14	18.08.14	10.09.14	31.10.14	31.10.14	LAWA
Arsen	μg/l	< 5	< 5	< 5	20,1	14,6	19,1	< 5	< 5	< 5	< 5	5,67	9,67	< 5	10
Blei	μg/l	< 5	13,4	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	7
Cadmium	μg/l	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	< 0,4	0,5
Chrom gesamt	μg/l	1,4	4,06	2,41	1,55	1,52	3,25	1,34	3,01	1,18	2,18	2,81	3,43	2,11	7
Kupfer	μg/l	12,2	24,4	7,56	3,72	< 3	< 3	< 3	< 3	< 3	15,2	< 3	< 3	< 3	14
Nickel	μg/l	4,54	6,07	< 1	1,75	2,42	< 1	< 1	< 1	< 1	3,78	2,82	3,14	< 1	14
Quecksilber	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	0,2
Zink	μg/l	16,6	21	12,6	11,6	10,3	5,21	< 5	< 5	< 5	25,8	7,7	6,49	< 5	58
KW-Index	mg/l	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	0,3	< 0,1	< 0,1	8,7	3	0,17	< 0,1	0,1
BTX															
Σ BTEX	μg/l	0	0	0,8	0	0	0,4	0,508	0,399	1	2,07	0,844	5	0,3	20
LHKW															
Σ LHKW	μg/l	0	0	0,491	0	0	0,174	0	0	0,272	0	0	0,162	0	20
PAK															
Naphthalin	μg/l	< 0,02	< 0,02	< 0,02	0,087	0,094	0,087	0,036	< 0,02	0,021	0,176	0,705	0,609	< 0,02	1
∑ PAK	μg/l	0,172	0,057	0,079	3,75	2,73	1,47	0,926	0,557	0,65	3,95	5,28	3,34	0,079	0,2

1,4 Befund liegt unterhalb des Geringfügigkeitsschwellenwertes LAWA

13,4 Befund überschreitet den Geringfügigkeitsschwellenwert LAWA

5.3 Bewertung

5.3.1 Bewertungsgrundlagen

Als "Boden" wird die obere Schicht der Erdkruste einschließlich der flüssigen (Bodenlösung) und gasförmigen (Bodenluft) Bestandteile definiert, die die in § 2 Abs. 2 BBodSchG [2] genannten Bodenfunktionen übernimmt:

- 1. natürliche Funktionen als
 - a) Lebensgrundlage und Lebensraum für Menschen, Tiere, Pflanzen und Bodenorganismen,
 - b) Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen,
 - Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen aufgrund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers,
- 2. Funktionen als Archiv der Natur- und Kulturgeschichte sowie
- 3. Nutzungsfunktionen als Rohstofflagerstätte,
 - a) Fläche für Siedlung und Erholung,
 - b) Standort für die land- und forstwirtschaftliche Nutzung,
 - c) Standort für sonstige wirtschaftliche und öffentliche Nutzungen, Verkehr, Ver- und Entsorgung.

Schädliche Bodenveränderungen im Sinne des BBodSchG sind Beeinträchtigungen der Bodenfunktionen, die geeignet sind, Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für den einzelnen oder die Allgemeinheit herbeizuführen.

Für die Bewertung von Schadstoffgehalten im Boden im Hinblick auf eine mögliche Beeinträchtigung von Bodenfunktionen wurden in der BBodSchV [3] Vorsorgewerte für ausgewählte Schadstoffe erlassen:

Vorsorgewerte

sind Bodenwerte, bei deren Überschreitung unter Berücksichtigung von geogenen oder großflächig siedlungsbedingten Schadstoffgehalten in der Regel davon auszugehen ist, dass die Besorgnis einer schädlichen Bodenveränderung besteht (§ 8 BBodSchG).

Die Vorsorgewerte berücksichtigen den vorsorgenden Schutz der Bodenfunktionen bei empfindlichen Nutzungen. Sie werden unterschieden entsprechend der Hauptbodenarten Sand, Lehm/Schluff und Ton nach Bodenkundlicher Kartieranleitung.

Für die Beurteilung der Grundwasserbeschaffenheit werden die Geringfügigkeitsschwellenwerte der Länderarbeitsgemeinschaft Wasser (LAWA) [5] genutzt. Die GFS, die die Grenze zwischen einer geringfügigen Veränderung der chemischen Beschaffenheit des Grundwassers und einer schädlichen Grundwasserverunreinigung darstellt, ist definiert als Konzentration, bei der trotz einer Erhöhung der Stoffgehalte gegenüber regionalen Hintergrundwerten keine relevanten ökotoxischen Wirkungen auftreten können und die Anforderungen der Trinkwasserverordnung oder entsprechend abgeleiteter Werte eingehalten werden.

5.3.2 Boden (Festsubstanz)

Die im Boden gemessenen Schadstoffgehalte sind vor dem Hintergrund der langen Nutzungsgeschichte als Werftstandort insgesamt als gering einzustufen. In lediglich sechs der untersuchten 18 Bodenproben wurden Stoffgehalte oberhalb der Vorsorgewerte der BBodSchV bzw. der Z 0 - Zuordnungswerte der LAGA gemessen (vergl. Tab. 4). Betroffen hiervon waren ausschließlich Bodenproben der im südlichen Bereich positionierten Messstellen GWM 1 bis 4. Überschreitungen wurden festgestellt für die Stoffgruppe der Schwermetalle, in zwei Proben war der Gehalt an PAK (BS 1/4) bzw. der Gehalt an Mineralölkohlenwasserstoffen (BS 3/3) erhöht (Tab. 6).

Tabelle 6: Bodenproben mit Stoffgehalten oberhalb der Vorsorgewerte der BBodSchV bzw. der LAGA-Zuordnungswerte Z 0

		BS 1/2 GWM 1	BS 1/4 GWM 1	BS 2/1 GWM 2	BS 2/3 GWM 2	BS 3/3 GWM 3	BS 3/4 GWM 3	BBodSc	gewerte hV bzw. rte LAGA
Hauptbodenart		Sand	Sand	Sand	Sand	Sand	Schluff	Sand	L/U
KW-Index	mg/kg TS	< 50	< 50	85	< 50	230	< 50	100	100
KW mobil	mg/kg TS	< 50	< 50	83	< 50	220	< 50	100	100
KW-Typ		ı	ı	MD	-	MD	-		
Naphthalin	mg/kg TS	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1	k.A.	k.A
Benzo[a]pyren	mg/kg TS	0,031	0,405	< 0,01	< 0,01		0,035	0,3	1
∑ PAK	mg/kg TS	0,262	5,15	0	0		0,232	3	10
∑ PCB-6	mg/kg TS	0	0	0	0		0	0,05	0,05
Arsen	mg/kg TS	3,1	5,1	< 2,5	3,3		7,9	10	15
Blei	mg/kg TS	8	19,1	4,1	67		375	40	70
Cadmium	mg/kg TS	< 0,40	0,41	0,62	< 0,40		< 0,40	0,4	1
Chrom gesamt	mg/kg TS	10,2	22,6	9	7,7		13,6	30	60
Kupfer	mg/kg TS	20,6	15,1	15,8	10,1		132	20	40
Nickel	mg/kg TS	6,7	13,6	4,8	4,7		11,3	15	50
Quecksilber	mg/kg TS	0,16	0,2	< 0,05	0,34		1,5	0,1	0,5
Zink	mg/kg TS	44,5	48,7	21,5	20,1		35,9	60	150

Leichtflüchtige Schadstoffe in Form von leichtflüchtigen halogenierten Kohlenwasserstoffen (LHKW) und/oder aromatischen Kohlenwasserstoffen (BTEX-/ Monoarometen) wurden ebenso wie polychlorierte Biphenyle (PCB) und Terbutylzinn im Boden nicht nachgewiesen.

Die festgestellten Überschreitungen sind insgesamt als gering einzustufen. Es wird darauf hingewiesen, dass es sich bei den Bodenbefunden lediglich um punktuelle Daten handelt, die keine Rückschlüsse auf das auf dem Untersuchungsgelände im Boden auftretende Gesamt-Schadstoffpotential erlauben.

Die erhöhten Schadstoffgehalte reichen jeweils bis in die wassergesättigte Bodenzone, so dass die Bewertung nach Wasserrecht zu erfolgen hat (Abschn. 5.3.3).

5.3.3 Grundwasser

Der oberflächennahe Grundwasserleiter ist in zwei Segmente bzw. Stockwerke differenziert, von denen das obere die wassererfüllten Auffüllungsschichten oberhalb der organischen Weichschichten (Torfe / Mudden) und das untere die zur Tiefe folgenden gut durchlässigen Sande sind. Beide Stockwerke stehen in hydraulischem Kontakt (vergl. Abb. 2).

Der Grundwasserstrom im Untersuchungsgelände ist auf die Schlei gerichtet. Damit charakterisiert die Grundwassermessstelle GWM 4 den Grundwasseranstrom, die Messstellen GWM 1, GWM 2, GWM 3 und GWM 5 den Grundwasserabstrom des Untersuchungsgeländes.

Im Grundwasserabstrom wird die Grundwasserbeschaffenheit der wassererfüllten Auffüllungsschichten mit den Grundwassermessstellen GWM 1 und GWM 3 erfasst. Die Messstellen GWM 2 und GWM 5 spiegeln dagegen die Grundwasserbeschaffenheit in den gut durchlässigen Sanden des tieferen Stockwerks wider, wobei die Differenzierung wahrscheinlich bei GWM 2 fehlt

Im Grundwasseranstrom bei GWM 4 wurde lediglich bei der Beprobung vom 10.09.2014 für die Parameter Blei und Kupfer eine leichte Überschreitung des GFS festgestellt.

Im Grundwasserabstrom zeigten sich Überschreitungen der GFS für einzelne Schwermetalle bzw. für PAK und KW – Index, insbesondere im oberen Grundwasserstockwerk (GWM 1 und GWM 3). Die Gehalte waren bei der Erstbeprobung im August 2014 stets am höchsten. Die später im September und Oktober ausgeführten Grundwasseruntersuchungen führten in der Tendenz stets zu geringeren

Stoffgehalten. Dieser Sachverhalt ist auf die geringe Ergiebigkeit der Messstellen im oberen Stockwerk zurückzuführen. Bedingt durch die geringe Mächtigkeit des oberen Grundwasserstockwerkes und die geringere Wasserdurchlässigkeit sind keine konstanten Probenahmebedingungen zu erreichen, weil der Förderstrom frühzeitig abreißt. Die Probenahmen entsprechen hier deshalb lediglich stichprobenartiger Schöpfproben, was auch in der Schwankungsbreite der Vor-Ort-Messwerte zu Ausdruck kommt. Mit zunehmender Beprobungshäufigkeit und damit abnehmender Kontaktzeit des Grundwassers mit verunreinigten Bodenschichten verringern sich insgesamt auch die Stoffgehalte im Grundwasser.

Im tieferen Grundwasserstockwerk (GWM 2 und GWM 5) liegen dagegen andere Durchlässigkeiten und Grundwassermächtigkeiten vor (vergl. Abb. 2). Die hier anstehenden Mittel- und Grobsande weisen eine gegenüber dem oberen Stockwerk hohe Wasserdurchlässigkeit auf, auch die Grundwassermächtigkeit ist mit 1,3 bis 2,4 m gegenüber dem oberen Stockwerk höher, so dass nur hier ausreichend qualifizierte Grundwasserprobenahmen zur Beschreibung der Beschaffenheit durchgeführt werden konnten.

Das Grundwasser des oberen Grundwasserstockwerks bei GWM 2 weist Beeinträchtigungen der Beschaffenheit auf. So wurde bei der Erstbeprobung im August 2014 für Mineralölkohlenwasserstoffe und PAK jeweils ein Befund oberhalb des GFS gemessen. Bei den folgenden Untersuchungen im September und im Oktober waren keine Mineralölkohlenwasserstoffe nachweisbar. Die Gehalte an PAK gingen auf rd. 0,6 μg/l zurück. Die ebenfalls im tieferen Grundwasserstockwerk verfilterte Messstelle GWM 5 zeigte dagegen keine Stoffgehalte oberhalb der Geringfügkeitsschwelle (vergl. Tab. 5), was auf das vergleichsweise hohe Schadstoffrückhaltevermögen der überlagernden organischen Weichschicht hinweist.

5.4 Zusammenfassende Bewertung / Empfehlung

Die orientierende Untersuchung bestätigt den Verdacht auf nutzungsbedingte Einträge in den Untergrund des Untersuchungsgeländes. Im Grundwasserabstrom liegt nach Wasserrecht eine Beeinträchtigung der Grundwasserbeschaffenheit insbesondere durch PAK vor. Die Intensität dieser Grundwasserbeeinträchtigung ist insgesamt gering und begründet unter Beachtung der Verhältnismäßigkeit bei gleichbleibenden Standortbedingungen keine weitergehenden Maßnahmen zur Gefahrenbeseitigung.

Orientierende Untersuchung des Standortes Schiffswerft Otto - Eberhardt

Seite 17

Dies gilt umso mehr, als dass eine zukünftig stärkere Schadstoff - Mobilisierung infolge erhöhter Niederschlagsinfiltration ausgeschlossen werden kann, da keine zukünftigen Entsiegelungsmaßnahmen erfolgen sollen.

Zusätzliche Schadstoffeinträge in den Untergrund durch die geplante Umnutzung für Wohnbebauung sind ebenfalls nicht zu erwarten, so dass sich die Grundwassersituation mittel- und langfristig nicht verschlechtern, sondern nur verbessern kann.

Es wird empfohlen, die vorliegenden Untersuchungsergebnisse durch ein regelmäßiges Grundwassermonitoring an den bestehenden Messstellen GWM 1 bis GWM 5 zu verifizieren. Untersuchungsumfang und –häufigkeit sollten denen der orientierenden Untersuchung entsprechen und im Zeitablauf ggf. angepasst werden.

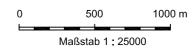
6 Literatur-/Quellenverzeichnis

- [1] Landesamt für Natur und Umwelt des Landes Schleswig-Holstein: Altlastenleitfaden Schleswig-Holstein. Flintbek, Juli 2003.
- [2] Bundesrepublik Deutschland: Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz BBodSchG. BGBl. I, G 5702, Nr. 16 vom 24.03.1998, S. 502.
- [3] Bundesrepublik Deutschland: Bundes Bodenschutz- und Altlastenverordnung (BBodSchV). BGBl. I. Teil, Nr. 36 vom 12.07.1999, S. 1554 ff.
- [4] Länderarbeitsgemeinschaft Abfall (LAGA): Anforderungen an die stoffliche Verwertung von mineralischen Abfällen: Teil II: Technische Regeln für die Verwertung. 1.2 Bodenmaterial (TR Boden). Stand 05.11.2004.
- [5] Länderarbeitsgemeinschaft Wasser (LAWA): Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser, 2004.

Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

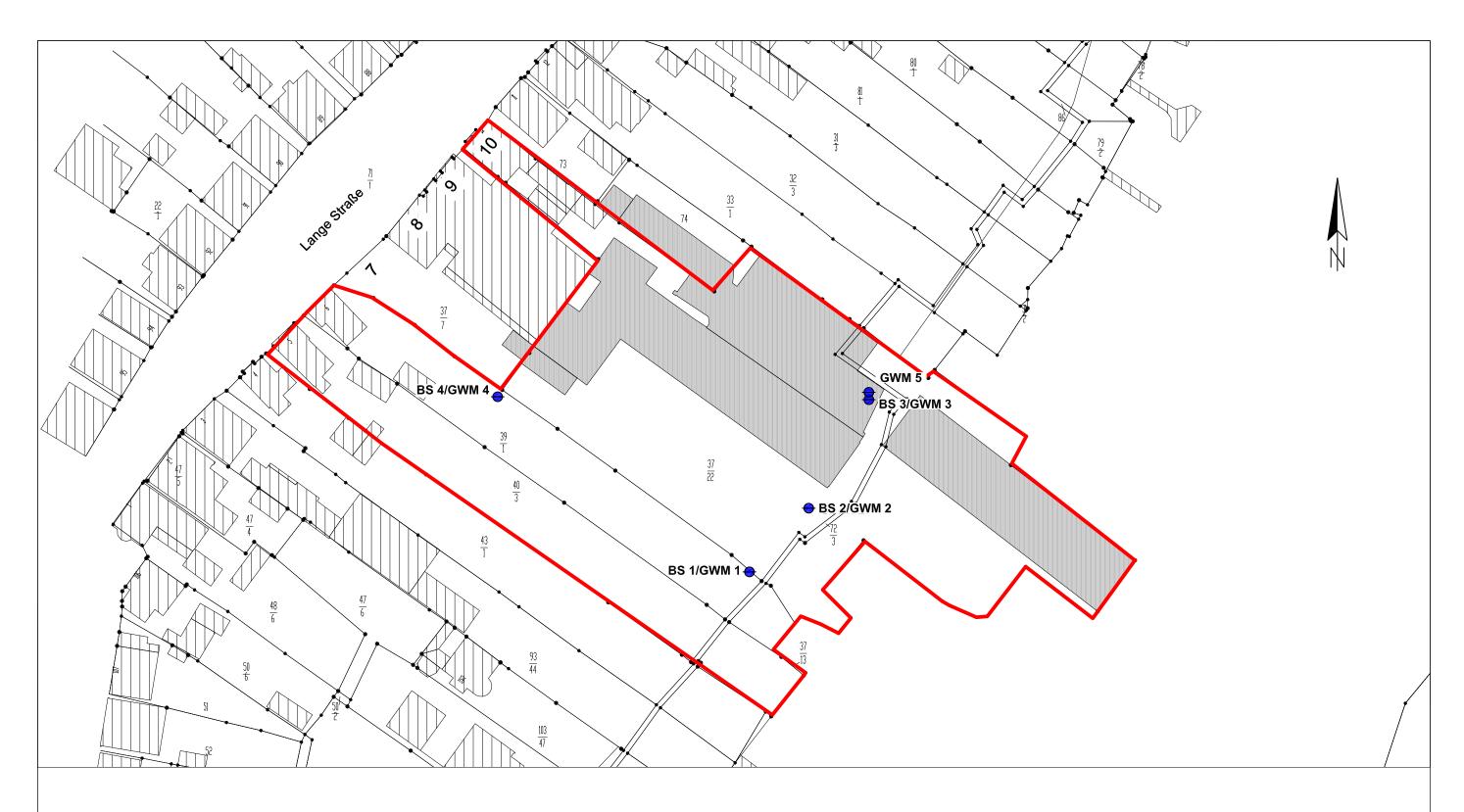
Anlagen

1	Planunterlagen
1.1	Übersichtsplan, 1:25.000
1.2	Lageplan der Grundwassermessstellen
1.3	Grundwassergleichenpläne
1.3.1	Grundwassergleichenplan (18.08.2014) 1 : 500
1.3.2	Grundwassergleichenplan (17.10.2014) 1 : 500
2	Schichtenverzeichnisse, Ausbauzeichnungen
3	Nivellement
4	Probenahmeprotokolle - Grundwasser
5	Prüfberichte
5.1	Boden
5.2	Grundwasser


Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

1	Planunterlagen
1.1	Übersichtsplan, 1:25.000
1.2	Lageplan der Grundwassermessstellen
1.3	Grundwassergleichenpläne
1.3.1	Grundwassergleichenplan (18.08.2014) 1 : 500
1.3.2	Grundwassergleichenplan (17.10.2014) 1 : 500

Untersuchungsgebiet


UCL Umwelt Control Labor Köpenicker Str. 59 // 24111 Kiel T +49 431 69641-0

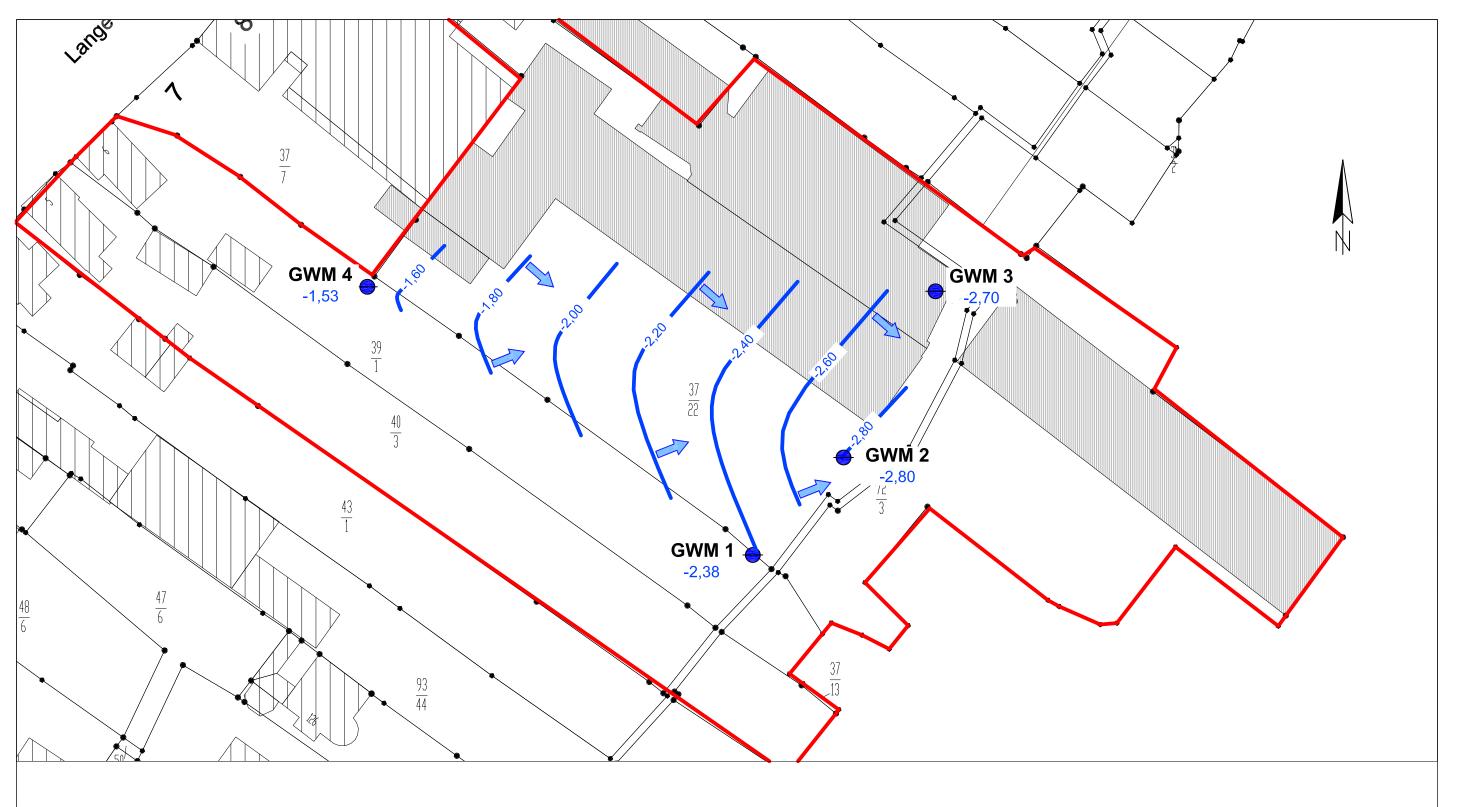
F +49 431 698787 info@ucl-labor.de

- staatlich anerkannt
- amtlich benannt
- akkreditiert nach
 DIN EN ISO/IEC 17025

Auftraggeber: Schiffswert Otto Eberhardt, Lange Reihe 7-10, 24399 Arnis	Name	Datum	
Projekt: Orientierende Untersuchung	Soltau	23.02.2015	Aufgestellt
auf dem Gelände der Schiffswerft Otto Eberhardt in 24399 Arnis, Lange Reihe 7-10	Gartz	23.02.2015	Bearbeitet
Übersichtsplan	Maßstab	Blattgröße	Anlage
Kartengrundlage: Ausschnitt TK25 Blatt 1325	1:25000	210 x 297 mm	1.1

Maßstab 1:750

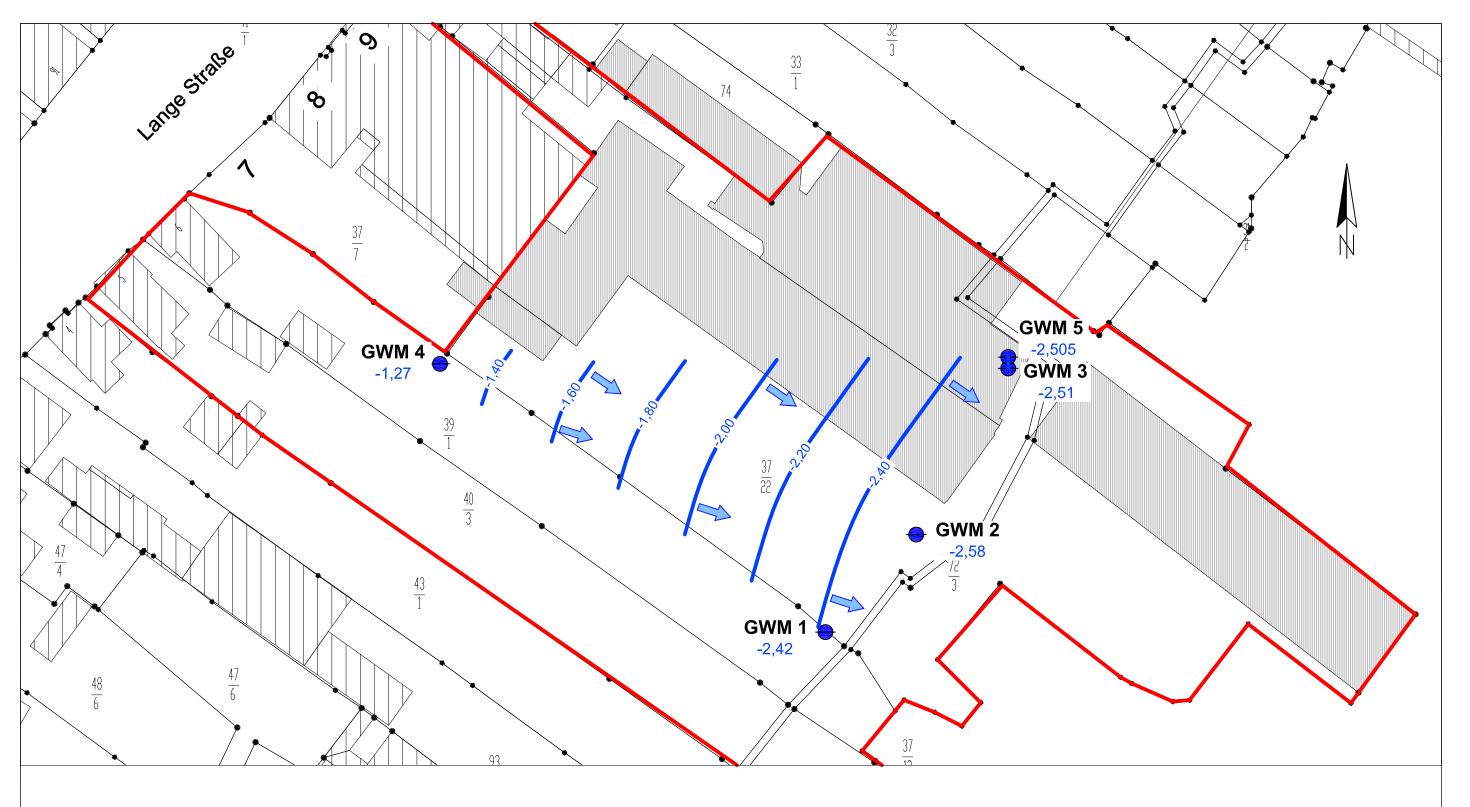
Grundwassermessstelle

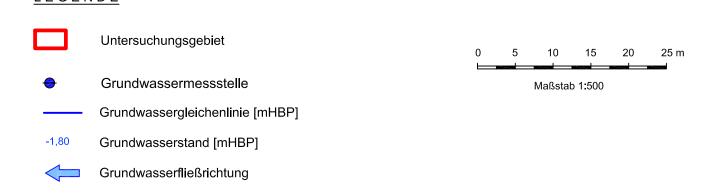


UCL Umwelt Control Labor Köpenicker Str. 59 // 24111 Kiel T +49 431 69641-0 F +49 431 698787

- staatlich anerkannt
- amtlich benannt
- akkreditiert nach
 DIN EN ISO/IEC 17025

Auftraggeber: Schiffswert Otto Eberhardt, Lange Reihe 7-10, 24399 Arnis	Name	Datum	
Projekt: Orientierende Untersuchung	Soltau	23.02.2015	Aufgestellt
auf dem Gelände der Schiffswerft Otto Eberhardt in 24399 Arnis, Lange Reihe 7-10	Gartz	23.02.2015	Bearbeitet
Lageplan der Grundwassermessstellen	Maßstab	Blattgröße	Anlage
Kartengrundlage: Steinert Bau mbH, Itzehoe	1:750	420 x 297 mm	1,2




UCL Umwelt Control Labor Köpenicker Str. 59 // 24111 Kiel T +49 431 69641-0 F +49 431 698787

- staatlich anerkannt
- amtlich benannt
- akkreditiert nach
 DIN EN ISO/IEC 17025

DAKKS Deutsche Akkreditierungsstelle D-PL-14026-01-00
--

Auftraggeber: Schiffswert Otto Eberhardt, Lange Reihe 7-10, 24399 Arnis	Name	Datum	
Projekt: Orientierende Untersuchung	Soltau	23.02.2015	Aufgestellt
auf dem Gelände der Schiffswerft Otto Eberhardt in 24399 Arnis, Lange Reihe 7-10	Gartz	23.02.2015	Bearbeitet
Grundwassergleichenplan Stichtag: 18.08.2014	Maßstab	Blattgröße	Anlage
Kartengrundlage: Steinert Bau mbH, Itzehoe	1 : 500	420 x 297 mm	1.3.1

Kartengrundlage: Steinert Bau mbH, Itzehoe

Projekt:

UCL Umwelt Control Labor Köpenicker Str. 59 // 24111 Kiel T +49 431 69641-0 F +49 431 698787

- staatlich anerkannt
- amtlich benannt
- akkreditiert nach DIN EN ISO/IEC 17025

DAkkS

Integral Laborator Integral Laborator			
Auftraggeber: Schiffswert Otto Eberhardt, Lange Reihe 7-10, 24399 Arnis	Name	Datum	
Projekt: Orientierende Untersuchung	Soltau	23.02.2015	Aufgestellt
auf dem Gelände der Schiffswerft Otto Eberhardt in 24399 Arnis, Lange Reihe 7-10	Gartz	23.02.2015	Bearbeitet
Grundwassergleichenplan Stichtag: 17.10.2014	Maßstab	Blattgröße	Anlage
Kartengrundlage: Steinert Rau mhH. Itzehoe	1:500	420 x 297 mm	1.3.2

Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

2 Schichtenverzeichnisse, Ausbauzeichnungen

IM AUFTRAG DER ZUKUNFT für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

D		Florida and				_			
Projekt	t: OU Schiffswerft Otto	Eberhardt				_	rzeit: : 04.0	8.2014	
Bohru	ung: GWM 1				m HBP -1,86m	bis:	bis: 04.08.2014		
1		2			3	4	5	6	
Bis	a) Benennung der Bo und Beimengunger				Bemerkungen	Entnommen Proben			
m unter	b) Ergänzende Bemer	rkungen		Sonderprobe Wasserführung				Tiefe	
Ansatz- punkt	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr	in m (Unter- kante)	
	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt				Kaiite)	
	a) Beton		·						
0.00	b)								
0,30	c)	d)	e)						
	f)	g)	h)	i)					
		ig, sehr schwach schluffig, nwach kiesig, schillführend	sehr schwad	:h			Pr. 1	0,40	
0,40	b)								
,	c) feucht, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunke	lgelblichbra	un				
	f) Auffüllung	g)	h)	i) +					
		ig, sehr schwach schluffig b g, sehr schwach kiesig, schi		schluffig,	starker MKW-Geruch		Pr. 2	0,50	
0,50	b)								
-,	c) feucht, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunke	lgrau					
	f) Auffüllung	g)	h)	i) +					
		ig, sehr schwach schluffig b andig, sehr schwach kiesig			schwacher MKW-Geruch		Pr. 3	1,00	
1,00	b) (schluffig), schillführ	end, sehr schwach humos			Grundwasserspiegel in Ruhe 0.52m				
	c) feucht, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunke	lgrau					
	f) Auffüllung	g)	h)	i) +					
	a) Mittelsand, feinsand sehr schwach grobs	,, 3 ,			schwacher MKW-Geruch		S 1/1 Pr. 4	1,28 1,80	
1,80	b) (schluffig), schillführ	b) (schluffig), schillführend, sehr schwach humos							
·	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunke	lgrau					
	f) Auffüllung	g)	h)	i) +					

IM AUFTRAG DER ZUKUNFT für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Seite: 2

						Seite	,. <u>L</u>	
	t: OU Schiffswerft Otto	Eberhardt					rzeit: 04.0	8.2014
Bohru	ung: GWM 1				m HBP -1,86m			8.2014
1		2			3	4 5		6
Bis	a) Benennung der Bo und Beimengunge				Bemerkungen	Entnommene Proben		
m unter	b) Ergänzende Beme	rkungen			Sonderprobe Wasserführung			Tiefe
Ansatz- punkt	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr	in m (Unter- kante)		
	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt				,
		dig, sehr schwach kiesig, se ffig, partienweise (humos)	hr schwach	feinsandig,			Pr.5	2,00
2,00	5)							
	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkel	grau				
	f) Auffüllung	g)	h)	i) +				
	a) Mittelsand, stark gro feinsandig, sehr sch			Pr.6	2,15			
2,15	b)							
	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkel	grau				
	f) Sand	g)	h)	i) +				
	a) Torf, sandig, sehr so			Pr. 7	2,70			
2,70	b)							
2,70	c) sehr feucht, weich	d)	e) dunkelgelblichbra					
	f)	g)	h)	i) 0				
	a) organogene Mudde	; Schluff, humos, sehr schwa	ach zersetzt	1		H		2,75 3,00
3,00	b)				,			
3,00	c) sehr feucht, weich	d) leicht zu bohren	e) dunkel	gräulichbra	un			
	f)	g)	h)	i) +				
	a)	I						
	b)							
	c)	d)	e)					
	f)	g)	h)	i)				

Projekt	: OU Schiffswerft Otto	Eberhardt				Boh	rzeit:		
	ıng: GWM 2				m HBP -1,92m			8.2014 8.2014	
1		2			3	4 5		6	
Bis	a) Benennung der Bo und Beimengunger				Bemerkungen	Entnommen Proben			
m unter	b) Ergänzende Bemerkungen			Sonderprobe Wasserführung			Tiefe		
Ansatz- punkt	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr	in m (Unter- kante)	
	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Solistiges				
	a) Beton								
0,60	b)								
0,00	c)	d)	e)						
	f)	g)	h)	i)					
	a) Mittelsand, grobsand schillführend	lig, sehr schwach kiesig, seh	nr schwach	feinsandig,	ab 0, 80 m nass, starker MKW-Geruch Grundwasserspiegel		Pr. 1 Pr. 2		1,00 1,30
1,30	b)				in Ruhe 0.89m				
	c) feucht, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkel	grau					
	f) Auffüllung	g) h) i) +							
	a) Mittelsand, feinsandi grobsandig, sehr sch	starker MKW-Geruch	Н	S 2/1 Pr.3	1,35 2,00				
2,00	b) Ziegelreste								
2,00	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkelgrau						
	f) Auffüllung	g)	h)	i) +					
	a) Mittelsand, grobsand schillführend	lig, sehr schwach kiesig bis	schwach ki	esig,	starker MKW-Geruch		Pr. 4	2,20	
2,20	b)								
_,_0	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkel	grau					
	f) Sand	g)	h)	i) +					
	Mittelsand, sehr schwach grobsandig, sehr schwach kiesig, sehr schwach feinsandig, schillführend, lagenweise (Torf)			Geruch unauffällig, Torflagen 0, 05m		Pr. 5	3,00		
3,00	b)								
0,00	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkel	grau					
	f) Sand	g)	h)	i) +					

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 2 Projekt: OU Schiffswerft Otto Eberhardt **Bohrzeit:** von: 04.08.2014 **Bohrung: GWM 2** m HBP -1,92m bis: 04.08.2014 2 3 5 1 6 a) Benennung der Bodenart Entnommene Proben Bis und Beimengungen Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang **Sonstiges** kante) f) Übliche g) Geologische i) Kalkh) **Gruppe** Benennung Benennung gehalt a) Grobsand, kiesig, schillführend Geruch unauffällig Pr.6 3,30 b) 3,30 c) naß, mitteldicht d) mäßig schwer zu e) dunkelgrau gelagert bohren h) i) + f) Sand g) a) organogene Mudde; Schluff, schillführend, humos H\$ 2/2 Geruch unauffällig 3,35 Pr. 7 4,00 b) 4,00 d) c) sehr feucht, weich e) dunkelgrau f) h) i) + g) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) a) b) c) d) e) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: OU Schiffswerft Otto Eberhardt **Bohrzeit:** von: 05.08.2014 m HBP -1,64m **Bohrung: GWM 3** bis: 05.08.2014 2 1 3 5 6 a) Benennung der Bodenart Entnommene Bis und Beimengungen Proben Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang **Sonstiges** kante) f) Übliche i) Kalkg) Geologische h) Benennung Benennung Gruppe gehalt a) Beton b) 0,25 c) d) e) i) h) f) g) Pr. 1 a) Mittelsand, grobsandig bis stark grobsandig, kiesig 0,45 b) 0,45 c) feucht, mitteldicht d) mäßig schwer zu e) dunkelgelblichbraun gelagert bohren h) i) + f) Auffüllung g) H\$ 3/1 a) Schluff, sandig, tonig, kiesig starker MKW-Geruch 0,50 Pr. 2 0,65 b) 0,65 c) feucht, mitteldicht d) mäßig schwer zu e) dunkelgrau gelagert bohren f) Auffüllung g) h) i) + a) Sand, schluffig, sehr schwach tonig, sehr schwach kiesig, schillführend starker MKW-Geruch Pr. 3 1,20 Grundwasserspiegel in Ruhe 1.06m b) Ziegelbruch 1,20 c) naß, mitteldicht d) mäßig schwer zu e) dunkelgrau bohren gelagert i) + f) Auffüllung h) g) H\$ 3/2 a) organogene Mudde; Schluff, humos, zersetzt, schillführend starker MKW-Geruch 1,30 Pr.4 2,25 b) 2,25 c) sehr feucht, weich d) leicht zu bohren e) dunkelgrau h) i) f) g)

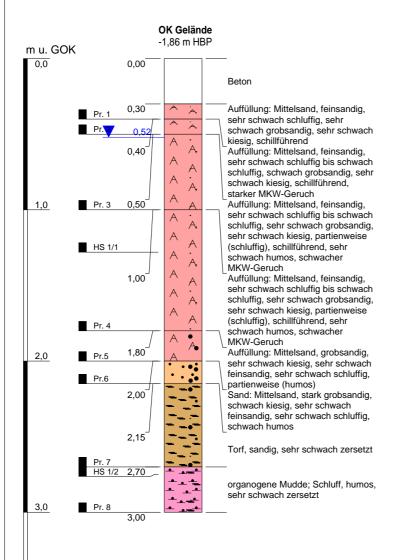
IM AUFTRAG DER ZUKUNFT für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

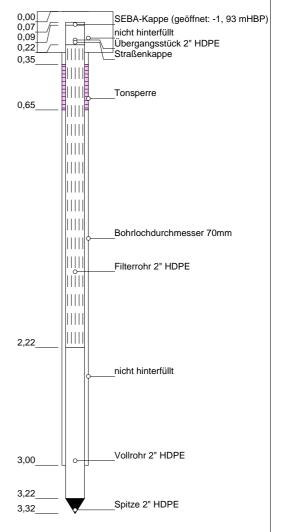
						1_		
	t: OU Schiffswerft Otto	Eberhardt					rzeit: : 05.0	8.2014
Bohru	ung: GWM 3	m HBP -1,64m		8.2014				
1		2			3	4	5	6
Bis	a) Benennung der Boo und Beimengungen				Bemerkungen	Entnommene Proben		
m unter Ansatz- punkt	b) Ergänzende Bemer	kungen			Sonderprobe Wasserführung			Tiefe
	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr	in m (Unter-
	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	t			kante)
	a) Mittelsand, grobsand	lig, schwach kiesig, humos	, schillführen	ıd	fauliger Geruch		Pr.5	3,00
3,00	b)							
0,00	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkel	grau				
	f) Sand	g)	h)	i)				
	a) Grobsand, kiesig, scl	fauliger Geruch		Pr. 6	3,50			
3,50	b)							
0,00	c) naß	d) mäßig schwer zu bohren	e) dunkel	grau				
	f) Sand	g)	h)	i) +				
	a) organogene Mudde; schwach sandig, sch	fauliger Geruch	Н	S 3/3 Pr. 7	3,55 4,00			
4,00	b)							
-,	c) sehr feucht, weich	d) mäßig schwer zu bohren	e) dunkel	grau				
	f)	g)	h)	i)				
	a)							
	b)							
	c)	d) e)						
	f)	g)	h)	i)				
	a)							
	b)	b)						
	c)	d)	e)					
	f)	g)	h)	i)				
						1		

Dualak	t. Oll Cabiffania ft Otta Fl	a ula a udit				Dah		
	t: OU Schiffswerft Otto Etung: GWM 4	pernarat			m HBP -0,07m	von		8.2014 8.2014
1		2			3	4	4 5	
Bis	a) Benennung der Bode und Beimengungen	=			Bemerkungen	E	Entnommene Proben	
m unter	b) Ergänzende Bemerkungen			Sonderprobe Wasserführung			Tiefe	
Ansatz- punkt	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter- kante)		
	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			Kantej
	a) Pflaster		1					
0,08	b)							
0,06	c)	d)	e)					
	f)	g)	h)	i)				
	a) Mittelsand, grobsandig	, sehr schwach kiesig, se	hr schwach	feinsandig		Pr.1		0,80
0,80	b)							
0,00	c) feucht, mitteldicht gelagert	d) mäßig schwer zu bohren	e) dunkelgelblichbra		un			
	f) Auffüllung	g)	h)	i) +				
	a) Schluff, tonig, sandig, l	0, 80-1, 00 m schwarz		S 4/1 Pr. 2	0,90			
1,60	b) Ziegelbruch	Grundwasserspiegel in Ruhe 1.45m		Pr. 3	1,60			
1,00	c) feucht bis sehr feucht, steif bis weich	d) mäßig schwer zu bohren	e) gelblic	hbraun				
	f) Auffüllung	g)	h)	i) +				
	a) Mittelsand, grobsandig schwach feinsandig	, sehr schwach kiesig, sc	hwach schlu	ıffig,			Pr. 4	1,85
1,85	b)							
.,00	c) naß, mitteldicht gelagert	d) mäßig schwer zu bohren	e) gelblic	hbraun				
	f) Sand	g)	h)	i) +				
	a) Schluff, sandig, tonig, I			Pr. 5	2,10			
2,10	b)							
<u>_</u> ,10	c) naß, steif	d) mäßig schwer zu bohren	e) gelblic	hbraun				
	f) Geschiebemergel	g)	h)	i) +				

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 2 Projekt: OU Schiffswerft Otto Eberhardt **Bohrzeit:** von: 05.08.2014 **Bohrung: GWM 4** m HBP -0,07m bis: 05.08.2014 2 3 5 1 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unternach Bohrgut nach Bohrvorgang punkt **Sonstiges** kante) f) Übliche g) Geologische i) Kalkh) **Gruppe** gehalt Benennung Benennung a) Feinsand, schwach schluffig Pr. 6 2,35 b) 2,35 c) naß, mitteldicht d) mäßig schwer zu e) rötlichgelb gelagert bohren h) i) + f) Sand g) a) Schluff, sandig, tonig, kiesig HS 4/2 2,40 Pr. 7 3,00 b) 4,00 d) mäßig schwer zu e) rötlichgelb c) naß, steif bohren h) i) + f) Geschiebemergel g) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) a) b) c) d) e) f) h) i) g)

Schichtenverzeichnis

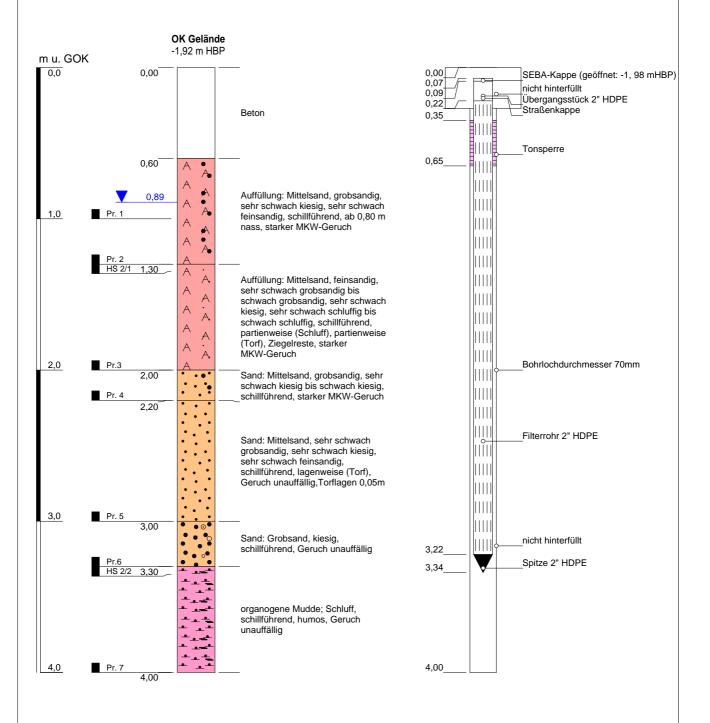

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Eberhard-Werft, Langestraße 7,24399 Arnis Datum: 17.10.2014 0m **Bohrung: GWM 5** 1 2 3 4 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) gehalt Benennung Benennung Gruppe a) Beton b) 0,25 c) d) e) i) h) f) g) a) Aufschüttung, Grobsand; mittelsandig, kiesig schwach feucht b) 0,50 c) d) leicht zu bohren e) braun i) f) Auffüllung h) g) a) Aufschüttung, Mittelsand; feinsandig, grobsandig, organisch, Grundwasserstand nach Beendigung der lagenweise Schluff, feinsandig, vereinzelt Betonbruch Bohrung 1.10m b) MKW-Geruch feucht 1,20 d) leicht zu bohren e) dunkelgraubraun f) Auffüllung g) h) i) a) Aufschüttung, Torf; mäßig zersetzt, lagenweise Mudde, lagenweise feucht Mittelsand, grobsandig, vereinzelt Ziegelbruch, Glas 1,90 c) weich d) e) dunkelbraun i) f) Auffüllung h) g) a) Torf; lagenweise Mudde, lagenweise Mittelsand, grobsandig feucht b) 2,30 d) c) weich e) dunkelbraungrau h) i) f) Torf/Mudde g)



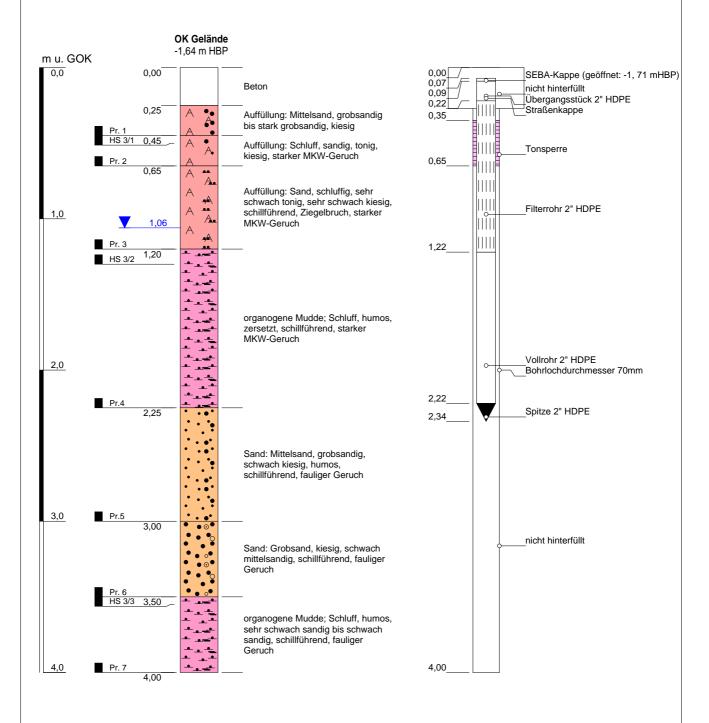
Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 2 Projekt: Eberhard-Werft, Langestraße 7,24399 Arnis Datum: 17.10.2014 **Bohrung: GWM 5** 0m 2 3 4 5 6 1 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unternach Bohrgut nach Bohrvorgang punkt Sonstiges kante) f) Übliche g) Geologische h) i) Kalk-Benennung Benennung Gruppe gehalt a) Grobsand; mittelsandig, kiesig, Muschelreste naß b) 3,00 d) leicht zu bohren c) e) grau h) i) f) Grobsand g) a) b) c) d) e) i) f) h) g) a) b) c) d) e) f) g) h) i) a) b) d) e) c) f) h) i) g) a) b) c) d) e) f) h) i) g)

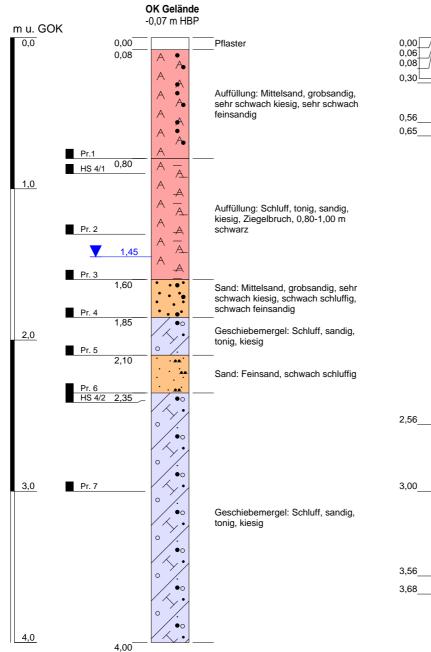
Ausbauplan Grundwassermessstelle GWM 1/BS 1

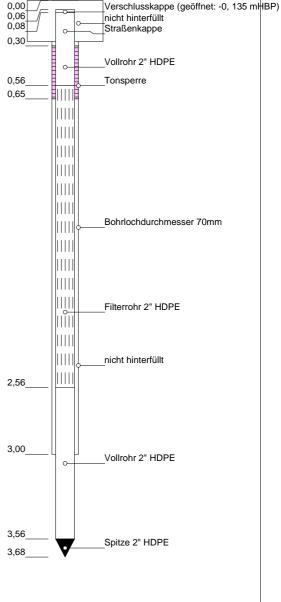


Projekt: OU Schiffswerft Otto Eberhardt												
Bohrung:	GWM 1/BS 1											
Auftraggeber:	Schiffswerft Otto Eberhardt, Arnis	Rechtswert:	0									
Bohrfirma:	UCL GmbH	Hochwert:	0									
Bodenansprache	: DiplGeol. Münn	Ansatzhöhe:	-1,86 m HBP									
Bohrungsdatum:	19.08.2014	Endtiefe:	3,00 m uGOK									


Ausbauplan Grundwassermessstelle GWM 2/BS 2

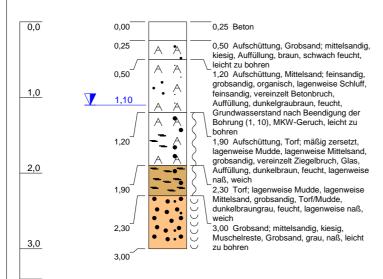
Projekt:	OU Schiffswerft Otto Eberhardt											
Bohrung:	GWM 2/BS 2											
Auftraggeber:	Schiffswerft Otto Eberhardt, Arnis	Rechtswert:	0									
Bohrfirma:	UCL GmbH	Hochwert:	0									
Bodenansprache	: DiplGeol. Münn	Ansatzhöhe:	-1,92 m HBP									
Bohrungsdatum:	19.08.2014	Endtiefe:	4,00 m uGOK									

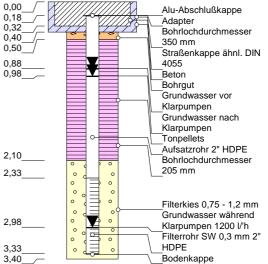

Ausbauplan Grundwassermessstelle GWM 3/BS 3



Projekt:	OU Schiffswerft Otto Eberhardt											
Bohrung:	GWM 3/BS 3											
Auftraggeber:	Schiffswerft Otto Eberhardt, Arnis	Rechtswert:	0									
Bohrfirma:	UCL GmbH	Hochwert:	0									
Bodenansprache	: DiplGeol. Münn	Ansatzhöhe:	-1,64 m HBP									
Bohrungsdatum:	19.08.2014	Endtiefe:	4,00 m uGOK									

Ausbauplan Grundwassermessstelle GWM 4/BS 4





Projekt:	OU Schiffswerft Otto Eberhardt										
Bohrung:	GWM 4/BS 4										
Auftraggeber:	Schiffswerft Otto Eberhardt, Arnis	Rechtswert:	0								
Bohrfirma:	UCL GmbH	Hochwert:	0								
Bodenansprache	: DiplGeol. Münn	Ansatzhöhe:	-0,07 m HBP								
Bohrungsdatum:	19.08.2014	Endtiefe:	4,00 m uGOK								

m u. GOK (0,00)

Höhenmaßstab: 1:50 Horizontalmaßstab: 1:15

Blatt 1 von 1

Projekt:	Ebernard-werft,Langestraße 7,2439	99 Arnis
Bohrung:	GWM 5	
Auftraggeber:	UCL Umwelt Control Labor GmbH	Rechtswert: 0
Bohrfirma:	Grisar Bohrtechnik / 14 KI 29006	Hochwert: 0
Bearbeiter:	Dipl.Geol.Bentahar	Ansatzhöhe: 0,00 m
Datum:	17.10.2014	Endtiefe: 3,00 m

Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

3 Nivellement

BV	Langestraße	7, 24	399 Arnis	;					
AG	UCL GmbH							CD	CAD
Bauleitg.	Herr Münn							G K	SAR Bohrtechnik
Ausf.	17.10.2014								Eckernförderstraße 280
PN	14 KI 29006								24119 Kronshagen
Kol.	Bentahar								Tel.: 0431- 39 57 49 Fax: 0431- 39 57 59
	20.110.110.1								_
								Blatt	1/1
N	ivellierbla	tt						Datum	17.10.2014
								Name	Bentahar
								ranio	Dontaria
Höhe Festpunkt:	0,000	Г		ahsol	lut	Bezei	ch	nung Festpunkt:	GWM 3
rione resipuniti		L			u .	Bozoi	٠	nung reotpunkt.	<u> </u>
			g [m] (c)	uuv					
RB-Punkt Bezeichnung	Rückblick		Vorblick		/B-Punkt	∆ H [m]		Höhe [m]	Bemerkungen
Bezeichnung	Ablesung		Ablesung	Ве	zeichnung	RB-VB		zu Bezugspunkt	
GWM 3	1,872		1,937	GI	NM 4 POK	-0,065		-0,065	
GWM 3	1,872		1,772		VM 4 GOK	0,100		0,100	
GWM 3	1,872		1,872		NM 3 POK	0,000		0,000	
	1			t					

Wetter:	
Wind:	

Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

4 Probenahmeprotokolle - Grundwasser

										6061	3
Auftraggeber:	Eburl	iarolf				DPNS	-14-	380240		_ U	CL
Projekt:		rolf Wery									
		Probenahm								44 5	2001
Bezeichnung der Mes				Probe	nahm	edatum:	18.	.08.1	4 LISA	-Nr.: // 4- '3	8024-1
Angaben zur Me									CO		
Art der Messstelle:											
Bezeichnung des Me Sohltiefe (Ist):	sspunkte 3,19	s (MP): 🔼 (offene Ve _ m unte	rschlusska r MP	арре	Sonstig Ruhewas	es: sers	tand:	0,45	n	n unter MP
Angaben zum Probenahmegerät											
Schöpfer: Entnahmetiefe:3 05 m unter MP											
Unterwasserpume:											
Saugpumpe: Förderstrom:m³/h I/min											
Messungen während der Probenahme											
Zeit T pH-Wert Leitfähigk.* O₂ Redoxpot Förderwas-serstand [m] Beginn Abpumpen: 19:33 h / min											serstand [m]
Beginn Abpumpen:	110.0	⊇ n/min	40.3	22 10	-2	<u> </u>	-	90	148		
			10:3	55 17	,	7,24	0	00	1,48		
Messwerte konstant:	Піс	∏ noin		_			1				
wesswerte konstant.	u ja	L2 Helli					-				
Ende Abpumpen: _	19:35	f h / min						П			
24							l				
* Temperaturkompensat	tion bez. a	uf 25 °C									
Angaben zur Pro	be		0	0.7							
Probenahme nach Ab	pumpen		0	,003	m³				10 2		
Farbe der Probe:		fran				emperatur:			1),2		°C
Farbe absetzbare Sto		grown				ne Leitfähigk	eit:		590		µS/cm
Trübung:		starte			Wert:			Y	1,24		
Geruch:		MUN			-	tential:		-			mV
Lufttemperatur [°C]:		15,6		Sau	ersto	ff:			1,48		mg/l
Angaben zu den	Prober	nflaschen						II.			7/
Тур	Anzahl	Тур		Anzahi		Тур		Anzahl		Тур	Anzahl
UCL100/1L PE		UCL105/250				200/1L GG				250mL BG	
UCL102/250ml PE		UCL106/250			_	201/1L GG				250mL BG	
UCL103/250ml PE		UCL107/250i				202/250mL B			-	250mL WG	-
UCL104/250ml PE		UCL108/250i			-	203/250mL B	_			250ml steril	
100 ml PE (viereckig)	n	200 ml PE (v	iereckig)		500n	nl PE (viereck	ig)		1000ml P	E (viereckig)	
Bemerkungen:	/ _										
Mun											
Probenehmer:	Mi	n / Mel	60		Pı	obenann	ahr	ne Labo	r:		
Name in Block	kschrift / U	Action to the second se			Da	tum Unter	schri	ft 18.0	8.14	BA	uchs

Auftraggeber:	Eb	vharolf								_U	CL
Projekt:	Ebe	shardt	Werf	1, A	m! S	\$					
		Probenahn									
Bezeichnung der Me	ssstelle:	6WH	Z	Probe	nahm	nedatum: 🦯	8.	08.1	LISA-	Nr.: 14-3	38024-2
Angaben zur Me	ssstell	е									
Art der Messstelle:		Kamin	Muns	en		_ Rohr / So	hac	ht:	<u> </u>	0	mm
Bezeichnung des Me	sspunkte	s (MP): 🗵	offene Ve	☐ Sonstig	es:						
Sohltiefe (Ist):	2,0	86	_ m untei	r MP		Ruhewas	sers	tand:	0,8	2n	n unter MP
Bezeichnung des Messpunktes (MP): offene Verschlusskappe Sonstiges: Sohltiefe (Ist): Ruhewasserstand: m unter MP Angaben zum Probenahmegerät											
Schöpfer: Entnahmetiefe: Z m unter MP Unterwasserpume:											
D Untopuescomum	io.	(Aunet					ui iii	.00.0.			iii diltoi ivii
Covernment	le,					Färd	orot		006	m³/h	
Saugpumpe: Förderstrom:											
Messungen während der Probenahme Zeit T											
1	12.0	-	Zeit	l°(C] ,	pH-Wert		µS/cm]	[mg/l]	[mV]	serstand [m]
Beginn Abpumpen:	16.00	h/min	10	. 17	0	700	1	2///	01.0		4.05
				15 17	5	7,20			0,42		1,02
			12:1	15 17	11	7,18	1	719	0,20		114
Messwerte konstant:	Dia	□ noin									110
wesswerte konstant:	ia ja	L Hein		0 17	-		1	1-93	0,72		1,15
			12:0	25 17,	<u>.</u>	7,14	1	592	0,13		1,15
Ende Abpumpen:	12:2	5 h / min									
* Temperaturkompensa	tion bez. a	uf 25 °C									
Angaben zur Pro				0.7							
Probenahme nach At				102	m³				11 7		(2)_
Farbe der Probe:		groun				emperatur:		-	1502		°C
Farbe absetzbare Sto	offe:	gran				he Leitfähigk	eit:		7 111		µS/cm
Trübung:	-	Start			Wert			=	ANA		
Geruch:	-	15,6				itential:			0,13		mV
Lufttemperatur [°C]:	_ =			Sat	uersto	on: 		-	UNI		mg/l
Angaben zu den					1				1	_	
Typ	Anzahl	Тур		Anzahl	1101	Тур		Anzahl		Typ	Anzahi
UCL100/1L PE		UCL105/250			-	200/1L GG			UCL204/2		
UCL102/250ml PE UCL103/250ml PE		UCL106/250 UCL107/250			-	201/1L GG 202/250mL B	-			50mL BG	
UCL103/250ml PE		UCL108/250			-	203/250mL B			-	50ml steril	
100 ml PE (viereckig)		200 ml PE (v			-	nl PE (viereck	_		-	E (viereckig)	
Bemerkungen:		1	.5. 50kig/		1 3001	= (*101001	·5/			(5.05/119)	
	Demerkungen.										
Probenehmer:	Hunn	Moller	-		P	robenann	ahr	ne Labo	r:	_	A
Name in Bloc					Da	atum Unters	schri	ft 18 C	8.14	B.P	lucks

Auftraggeber:	_U	JCL									
Projekt:	Eber	hardf	Wof	t, A	mi	S					
		Probenahn									
Bezeichnung der Me	ssstelle:	GWM:	3	Probe	enahm	edatum: /	18.0	8.1	Y LISA-	Nr./14-3	8024-3
Angaben zur Me	essstell	e p	1.								
Art der Messstelle:											
Bezeichnung des Me Sohltiefe (Ist):	esspunkte	s (MP): 🍱	offene Ve	rschlussk	appe	☐ Sonstig	es:		0.00		
Sohltiefe (Ist):	2,14		_ m unter	r MP		Ruhewas	serstan	id: ,	0,99	r	n unter MP
Angaben zum P											
Schöpfer:						Entn	ahmeti	efe:	2,05	=	m unter MP
Unterwasserpum	ne:	louit									
Saugpumpe:						Förd	erstron	n:		m³/h	l/min
Messungen wäh	rend d	er Proben	ahme								
)			Zeit	T C		pH-Wert	Leitfäl	higk.*	O ₂ [mg/l]	Redoxpot [mV]	Förderwas- serstand [m]
Beginn Abpumpen:	11; 31	🙎 h / min			J		(J.C.	S11.1	nngu.	, , , , , , , , , , , , , , , , , , ,	oorousing [m]
			11:3	0 16	5,1	7.08	28	30	0,52		
					8	S .					
	_										
Messwerte konstant:	∐ ja	nein									
					*						
Ende Abpumpen:	11:30	h/min									
Linde Abpaintpen.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	117 (1111)		-							,
* Temperaturkompensa	tion bez. a	uf 25 °C									
Angaben zur Pro	obe										
Probenahme nach At	bpumpen	von	003		m³			- 14			
Farbe der Probe:	-	dunkel	gran	Wa	sserte	emperatur:	-		6,1		°C
Farbe absetzbare Sto	offe:	dukel	21Cm	elel	ktrisch	ne Leitfähigk	eit: _		830		μS/cm
Trübung:		star		pH-	-Wert:				408		
Geruch:	4.	MKu)	Red	doxpo	tential:	-		. 0 -		mV
Lufttemperatur [°C]:	_	15,6		Sau	uersto	ff:		(0,82		mg/l
Angaben zu den	Prober	nflaschen									
Тур	Anzahl	Тур		Anzahl		Тур	A	Anzahl		Тур	Anzahl
UCL100/1L PE		UCL105/250r			-	200/1L GG			UCL204/2		
UCL102/250ml PE		UCL106/250r			+	201/1L GG			UCL205/2		
UCL103/250ml PE		UCL107/250r			-	202/250mL B				50mL WG	
UCL104/250ml PE		UCL108/250r				203/250mL B				50ml steril	
100 ml PE (viereckig) Bemerkungen:	ļ	200 ml PE (vi	егескід)		Jour	nl PE (viereck	ig)		1000ml PE	(viereckig)	
Demerkungen			/								
Probenehmer: Name in Bloc	Muhu kschrift/U	Motty-	14	un		robenann tum Unters			or:)8.14	B.1	Rubs

			_								
Auftraggeber:	Eb	whord f									ICL
_										===	
Projekt:	Eboh	ardf We	off,	Aoni?	S						
		Probenahm	eprotol	koll für G	rund	lwasser na	ach l	DIN 3840	2-13	_	
Bezeichnung der Me										Nr.: 14-	38024-4
Angaben zur Me	ssstell		13								
Art der Messstelle:			bour	men		Rohr / So	chacl	nt:	56) ==	mm
Bezeichnung des Me Sohltiefe (Ist):	sspunkte	s (MP): 🛂 d	offene Ve	rschlussk	appe	☐ Sonstig	jes:				
Sohltiefe (Ist):	3,4	7	m unte	r MP		Ruhewas	sersi	tand:	1,30	r	n unter MP
Angaben zum P	robena	hmegerät									
Schöpfer:						Entr	ahm	etiefe:	1,30)	m unter MP
Unterwasserpum	ne:	Comet									
Saugpumpe:						Förd	lerstr	om:		_ m³/h	I/min
Messungen wäh										<u> </u>	×
)			Zeit	1 7	[[]_	pH-Wert		tfähigk.*	O ₂	Redoxpot	Förderwas-
Beginn Abpumpen:	MA	6 h/min		13	ر ا		1	JS/cm]	[mg/l]	[mV]	serstand [m]
			11:1	17 19	0	7, 20	1	944	0.43		
Messwerte konstant:	☐ ja	X nein									
	11-1	0					<u> </u>	4 5			
Ende Abpumpen:	Mr. M	1 h / min		-		-	-				
							-				
* Temperaturkompensa	tion bez. a	uf 25 °C					-				
Angaben zur Pro											
Probenahme nach Al		von ,	0,00	25_	m³						
Farbe der Probe:		hellbran	14	Wa	sserte	emperatur:			3,0		°C
Farbe absetzbare Sto	offe:	hellsron	1h	ele	ktrisch	ne Leitfähigk	eit:	-	044		μS/cm
Trübung:		stark		рН-	-Wert:	2		7	2,20		
Geruch:		MKW		Re	doxpo	tential:					mV
Lufttemperatur [°C]:	-	15,6		Sau	uersto	off:			43		mg/l
Angaben zu den	Probe	nflaschen									
Тур	Anzahl	Тур		Anzahl		Тур		Anzahi		Тур	Anzahi
UCL100/1L PE		UCL105/250r	nl PE		UCL	200/1L GG			UCL204/2	50mL BG	
UCL102/250ml PE		UCL106/250r	nl PE		UCL	201/1L GG			UCL205/2	50mL BG	
UCL103/250ml PE		UCL107/250r			-	202/250mL B				50mL WG	
UCL104/250ml PE		UCL108/250r			-	203/250mL B	-			50ml steril	
100 ml PE (viereckig)		200 ml PE (vi	ereckig)		500n	nl PE (viereck	ig)		1000ml Pi	E (viereckig)	
Bemerkungen:		()									
		VIII.									
Probenehmer:	Muni	N. Kin	110-		Pı	robenann					٨
Name in Bloc			~		Da	itum Unter	schrif	t 18.0	8, 14	B. R	was

T											
Auftraggeber: _		/	Ebert	ards t	verf	6		OPNS-	14-420670		JCL
Projekt: _		/s	berha	rds w	ceft	Annis	ı				
		Probenahr	neproto	koll für	Grund	dwasser n	ach [OIN 384	02-13		
Bezeichnung der M	essstelle:									-Nr.: 14-0	12067
Angaben zur M	essstel			1.							
Art der Messstelle:		Remn	nbrun	nen		Rohr/S	chach	ît:	50		mm
Bezeichnung des M Sohltiefe (Ist):	ن	3,14	_ m unte	r MP	парро	Ruhewas	sserst	and:	0,5	1 r	n unter MP
Angaben zum f											
		_				Entr	nahme	etiefe:	3.0	20	m unter MP
Schöpfer:	me:	Co	met				ici ii ii	- Turio.	0,		THE GIRLOT TWI
Saugpumpe:											
Messungen wä						FOIC	Jersus	ЛП.		_ 111 ///	
Messungen wa	mena a	ier Proben	î	Ĭ	т	Ì	Leit	fähiok.*	O ₂	Redoxpot	Förderwas-
Beginn Abpumpen:	124	h (asia	Zeit	l l	8,7	pH-Wert	[h	fähigk.* S/cm]	[ma/I]	[mV]	serstand [m]
Beginn Abpumpen:	1/3 -	n/min	140	2 10	8,7	7,46	10	030	60,5	11.1	
							-			-	
				-			1				
Maria de la casa de	П.	□ :		-			1				
Messwerte konstant	: 🗀 ja	L nein									
			-								
					:*						
Ende Abpumpen:		h / min					-				
Znao / ispampom							-				
							-				
* Temperaturkompensa	ation bez. a	uf 25 °C									
Angaben zur Pr	obe						1				
Probenahme nach A		von			m³						
Farbe der Probe:	-	gra	и	Wa	asserte	emperatur:		•	18,7		°C
Farbe absetzbare St	offe:	9+0	u.	ele	ktrisch	e Leitfähigk	eit:		1030)	μS/cm
Trübung:		260	/	рН	-Wert:				7,46		
Geruch:		lu	ulis	Re	doxpot	tential:	_		nox		mV
Lufttemperatur [°C]:	4	1	8,1	Sa	uersto	ff:	8		20,5	•	mg/l
Angaben zu den	Probei	nflaschen	,						•		
Тур	Anzahl	Тур		Anzahl		Тур		Anzahl		Тур	Anzahl
JCL100/1L PE		UCL105/250r	nl PE		UCL2	200/1L GG		2	UCL204/2		
JCL102/250ml PE		UCL106/250r	nl PE		_	201/1L GG	\neg		UCL205/2		
JCL103/250ml PE	1	UCL107/250n	ní PE		UCL2	2/250mL B0	G	1	UCL206/2	50mL WG	
JCL104/250ml PE		UCL108/250n	nl PE		UCL2		G		UCL401/2	50ml steril	
00 ml PE (viereckig)		200 ml PE (vi	ereckig)		500m	l PE (vierecki	ig)		1000ml Pl	E (viereckig)	
Bemerkungen: ,	Wiceles	ansbig	1413	1,6	7				•		-
Probenehmer: Name in Bloc	lons /f6		A	1.	Pr	obenann:	ahm	e Labo	or:	B. Ru	who s
			0		LDat	Onters	Join III	7.0.0	_ , ,	.5 1 90	

Auftraggeber:			E ber	hards	reef	Pt .				[CL
Projekt:		E ber	herds	week	4 1	linis					
Bezeichnung der Me	essetelle:	Probenahr				dwasser n nedatum: _				Nr : /// /	12m(2)
Angaben zur Me			2	1 1100	enaini	iedatum.	70.0	7.47	LISA	-IVI/ 9- 4	2067-2
Art der Messstelle:			- 2			5.1.40				h	
						Rohr/\$					mm
Bezeichnung des Mo	esspunkte 2	es (MP): 🔼	offene V	erschluss		☐ Sonsti	ges: _		m 1	2	=
Sohltiefe (Ist):				er MP		Ruhewas	ssersta	nd:	0,6	<i>3</i> r	n unter MP
Angaben zum P		•									
Schöpfer: Unterwasserpun				, -		Entr	nahme	tiefe:	2,7	5	m unter MF
Unterwasserpun	ne:		Com	ct							
Saugpumpe: _						Före	derstro	m:	0.060	m³/h	1/min
Messungen wäh	nrend d	er Proben	ahme						,		
9			Zeit		T	pH-Wert	Leitfa	ahigk.*	O ₂	Redoxpot	Förderwas-
Beginn Abpumpen:	143	h / min	142	6 200	T *C]		1000	/cm]	[mg/l]	[mV]	serstand [m]
Degimi / topompon.	····	**/*******	143	241	20	7,11	15		20,5	n.l	0,88
			143	2 ^-	7,6	707		21	10,5	4	0,90
			144		7,0	7.07		18	10,5	7	0,91
Messwerte konstant:	ਯ :-	<u> </u>	119.	- 0	7.0	FUF	13	16	10,5	- "	0,50
Messwerte konstant:	и ja	☐ nein									
							-				
							-		0		
Ende Abpumpen:	1445	→ h/min									

		7									
* Temperaturkompensa	tion bez. a	uf 25 °C									
Angaben zur Pro											
Probenahme nach Al		von			m³						
Farbe der Probe:		Park	101			emperatur:	8	ē.	120		*C
Farbe absetzbare Sto	offe:	ohn				ne Leitfähigk	eit:		1516		US/cm
Trübung:	J.110.	schw			-Wert:	_	- E		1204		μο/cm
Geruch:		Pau	10			tential:	-		51		m∨
Lufttemperatur [°C]:		ful	91		uersto		-		20,5		
	Drobos	offer all and	-	Sa	uersio	II.			240		mg/l
Angaben zu den	1				1				<u> </u>		1
<i>Typ</i>	Anzahl	Тур		Anzahl		Тур		Anzahl		Тур	Anzahl
JCL100/1L PE		UCL105/250r			-	200/1L GG	1	1	UCL204/2		
JCL102/250ml PE	1	UCL106/250r			+	201/1L GG		1	UCL205/2		
JCL103/250ml PE JCL104/250ml PE	1	UCL107/250r				202/250mL B	_	1		50mL WG	
00 ml PE (viereckig)		UCL108/250n			1	03/250mL B	-			50ml steril	
	Wind	200 ml PE (vi		MYD		I PE (viereck	ig)		1000ml Pl	E (viereckig)	
Bemerkungen: ,	r icht	ausbrog	1514	10,50)						
Probenehmer: /c			1/5	1.		obenann	ahme	Labo	or:	B. Ru	, lac
Name in Block	SCHFITT / UI	nerschrift	10		Dat	um Unters	schrift	10.0	J 3.11 71	10. FU	10°3

Auftraggeber:			Ebas	hards	west	26					JCL
Projekt:		E	berhoi	ds we	fb	Ain	ري د				
		Probenahn	neprofo	koll für (Grund	dwasser n	ach DIN	1 3840	2-13		
Bezeichnung der Me	essstelle:									-Nr.:/4-4	2067-3
Angaben zur Me	essstel						,,,,,				W 57 3
Art der Messstelle:		Rumn									mm
Bezeichnung des Me Sohltiefe (Ist):	esspunkte	es (MP): 🛂 🖟	offene Ve	erschlussk or MP	appe	Sonstig	ges:	413	06	2	n unter MD
Angaben zum P			_ m unc	21 IVII		Tunewas	33CI Stair	J#:	900		THE THE
Schöpfer:		•				E	1 12 .	£	21	20	m unter MF
Unterwasserpun			1	4		Entr	nanmeue	не:	Z,o		m unter MF
Saugpumpe: _						Förd	derstrom	:		_ m³/h	l/mir
Messungen wäh	rend d	er Proben	ahme	103 -	- 0	č	iess	أ • بام:	0	Dodovnot	Förderwas-
Beginn Abpumpen:	150	ro	Zeit	[°	[[] [3]	pH-Wert	[h2/c	m]	O ₂ [mg/l]	Redoxpot [mV]	serstand [m]
Beginn Abpumpen:	//3	h/min	15	18 16	3	17,04	23	30	0,62	ny	m.f
				-							
				-				-			
Messwerte konstant:	∟ ја	☐ nein									
Ende Abpumpen:	15-26	7									
Ende Abpumpen:	1150	h / min						-			
* Temperaturkompensa	tion haz a	uf 25 °C				_	-	\rightarrow			
		ui 25 C									
Angaben zur Pro Probenahme nach At					. 3						
Farbe der Probe:	phamben	2/6/	A	10/	m³				11	2	90
		161	graci			emperatur:			220	2	°C
Farbe absetzbare Sto	те;	/0	gruu			ne Leitfähigk	keit:		239		μS/cm
Trübung:	19-	soe	15		Wert:		>-			7	
Geruch:	-	Jan	6117			tential:	2-1		11-1	,	mV
Lufttemperatur [°C]:		// 4	2,0	Sau	uersto	ff: 			0,62		mg/l
Angaben zu den		nflaschen			,				ï		
Тур	Anzahl	Тур		Anzahl		Тур	A	nzahl		Тур	Anzahl
JCL100/1L PE		UCL105/250n			-	200/1L GG		1		250mL BG	_
JCL102/250ml PE		UCL106/250n			_	201/1L GG	1	7		250mL BG	
JCL103/250ml PE	1	UCL107/250n			_	202/250mL B	-//	C		250mL WG	
ICL104/250ml PE		UCL108/250n			-	203/250mL B	_			250ml steril	-
00 ml PE (viereckig)	4 - 4	200 ml PE (vi		7.	4	I PE (viereck	ig)	7	1000ml P	E (viereckig)	
Bemerkungen:	150	1776	Wie	derans (s	viej	1535	1,2	9			
Probenehmer:	lens /	owuldt	M	1	Pr	obenann	ahme	Labo	r:	B. R	Λ.

Auftraggeber:			Ebert	hord	sweft	,			R
==						20		Bloom	diameter and
Projekt:		Eb	eshan	ls we	uft s	linis			
	Prob	enahmeprot	okoll für	Grund	dwasser n	ach DIN 384	02-13		
Bezeichnung der M		6WM4						-Nr.: 14-	42067-2
Angaben zur N	lessstelle	, ,							
Angaben zur N Art der Messstelle: Bezeichnung des N Sohltiefe (Ist): Angaben zum I		ummbru	nnen		Rohr/S	chacht:	50)	mm
Bezeichnung des M	lesspunktes (Mi	P): D offene \	/erschluss	skappe	Sonstiq	ges:	enes A	essete,	roho
Sohltiefe (Ist):	3,47	m uni	ter MP		Ruhewas	sserstand:	1,2	<i>"3</i> r	m unter MP
Angaben zum I	Probenahme	gerät							
Schöpfer: Unterwasserpu					Entr	nahmetiefe: _	3,	30	m unter MP
Unterwasserpu	me:	Come	£				- 170		
Saugpumpe:					Förd	derstrom:		m³/h	I/min
Messungen wä									
		Zei	t ,	T °C]	pH-Wert	Leitfähigk.	O ₂	Redoxpot	
Beginn Abpumpen:	h	/min 1/33	0	184		[µS/cm]	[mg/l]	[mV]	serstand [m]
		70.		, ,	-1,711	113	0,00	n.s	
Messwerte konstant	: 🗆 ja 🔲	nein							
		-							
				=					
Fede Abassassas		, ,							
Ende Abpumpen:	n /	min							
* Temperaturkompensa	ation bez. auf 25 °	С							
Angaben zur Pr	obe		<u> </u>						
Probenahme nach A	bpumpen von _			m³					
Farbe der Probe:		be 116 run	W	asserte	mperatur:	•			°C
Farbe absetzbare St	offe:	hellbrun	ele	ektrisch	e Leitfähigk	eit:			µS/cm
Trübung:		stark	рН	-Wert:					
Geruch:		ohne	Re	doxpot	ential:				mV
Lufttemperatur [°C]:		17,8	Sa	uerstof	f:	-			mg/l
Angaben zu den	Probenflas	chen							
Тур	Anzahl	Тур	Anzahl		Тур	Anzahl		Тур	Anzahl
JCL100/1L PE	UCL1	05/250ml PE		UCL2	00/1L GG	2	UCL204/2	50mL BG	
JCL102/250ml PE	UCL1	06/250ml PE		UCL2	01/1L GG		UCL205/2	50mL BG	
JCL103/250ml PE	1 UCL10	07/250ml PE		UCL2	02/250mL BC	1	UCL206/2	50mL WG	
JCL104/250ml PE		08/250ml PE		UCL2	03/250mL BC	3	UCL401/2	50ml steril	
00 ml PE (viereckig)		I PE (viereckig)	2 1 2		PE (vierecki	g)	1000ml PE	(viereckig)	
Bemerkungen:	Wicdeans	bicy 13 2	3 2,3	99 8					
Probenehmer:	kschrift / Untersch	nrift		Pro	obenanna ım Unters	ahme Labo	or:	R A	Rubs
					2	10.1	J J. 10 (

;						FT				— L	以钙皂	
Projekt: LANGESTRABE 7, ARNIS												
Projekt:		17.00		PL		/ CRITICO	,					
		Probenahn		koll für (Grunc	lwasser n	ach	DIN 384	02-13			
Bezeichnung der Me	ssstelle:	Ghill.	1	Probe	enahm	edatum:3	11	10,20	14 LISA	-Nr.: 14	-51091-	
Angaben zur Me	essstell	B										
Angaben zur Me Art der Messstelle:		KYMMI	KUUI	NFN		_ Rohr / S	chac	ht:	50		mm	
Bezeichnung des Me	esspunkte	es (MP): 📈	offene Ve	erschlussk	appe	☐ Sonstic	ges:					
Bezeichnung des Me Sohltiefe (Ist):	. 3,1	(4	_ m unte	r MP		Ruhewas	sers	tand:	0,49		m unter MP	
Angaben zum P												
Schöpfer:						Entr	nahm	etiefe:	3,00	5	m unter MP	
Schöpfer: Unterwasserpun	nο·	0	MET	1							TIT GITTOT WIT	
Saugpumpe: _							lorot.	- O	OF	3/h		
						FOR	ersti	OHI:	0.11		/i/min	
Messungen wäh	irena d	er Proben	Î	ì -	г	i	نم ا	tfähigk.*	O_2	Redoxpot	Förderwas-	
Beginn Abpumpen:	1,05		Zeit	,	C]	pH-Wert		S/cm]	[mg/l]	[mV]	serstand [m]	
Beginn Abpumpen:	1/(-	h / min	11/2	14	1	\$114	1	84	10,5	Mig-	1/45	
		1	11/2	- 134	1	+14	1	86	0,58	7,0	1,82	
			Mon	- 14	2	7,20	1	88	2,84	-11-	NEW	
		_										
Messwerte konstant:	🞽 ja	☐ nein										
					20							
	112	5										
Ende Abpumpen:	111 -	h / min										
											(t	
* Temperaturkompensa		ut 25 °C					1					
Angaben zur Pro		F	000/	1								
Probenahme nach Al	pumpen	von	IN	<u>, </u>	m³				11.1	١		
Farbe der Probe:	_H	LCLIGA	71/11			mperatur:			100	<u> </u>	°C	
Farbe absetzbare Sto	offe:	nouth	AUN			e Leitfähigk	eit:		TOS		µS/cm	
Trübung:	·	SIX	164	pH-	Wert:			-	4120)		
Geruch:	-	MUFFI	٥	Re	toqxob	ential:		,	/h-j-	5	mV	
_ufttemperatur [°C]:	17	1d,5		Saı	uersto	ff:			2,84		mg/l	
Angaben zu den	Probe	nflaschen										
Тур	Anzahl	Тур		Anzahl		Тур		Anzahl		Тур	Anzahl	
JCL100/1L PE		UCL105/250r	nl PE		UCL2	200/1L GG		1	UCL204/2	50mL BG		
JCL102/250ml PE		UCL106/250r	nl PE		UCL2	01/1L GG		1	UCL205/2	50mL BG		
JCL103/250ml PE	1	UCL107/250n	nI PE		UCL2	202/250mL B	G	1	UCL206/2	50mL WG		
ICL104/250ml PE		UCL108/250n	nl PE		UCL2	03/250mL B	G		UCL401/2	50ml steril		
00 ml PE (viereckig)		200 ml PE (vi	ereckig)		500m	I PE (viereck	ig)		1000ml PE	(viereckig)		
Bemerkungen: 🛚	RUUL	EN HA	T 2	U GE	RIVI	DEU ?	261	AUF.			-	
WIEDER AUSTI		1130 UH					-8 %	- M.S.		1xasa	14 BG	
Probenehmer: L	iller	1	1		Pr	obenann	ahn	ne Labo	r:		14 BG	
Name in Block	VTIL	nterschrift	1/2	~	Dat			() 3	11.	14 1	Moun	

ſ				1							
Auftraggeber:		EBER	HHC	5 - W	ER	FI					ICL
5		111	166	PIG	r	7.,	11	Dina			
Projekt:		Little	الالالالا	1 KAD	C	Ty/	+	NULS			
		Probenahn									
Bezeichnung der Me	ssstelle:	Coll	2	Probe	enahm	nedatum: 3	11	0. 201	14 LISA	-Nr.: 14-	-51091.
Angaben zur Me	essstell	le O L IIII	D. O. W	116	,				F		
Angaben zur Me Art der Messstelle:		KAMM	DKU	ONFN	-	Rohr/So	chac	ht:	30	- 42	mm
Dezeronnung des me	SOSTALIVE	35 (IVII).	Ollelle A	CISCIIIUSSN	appe	- Sonsing	jes:		01	О г	
Sohltiefe (Ist):				er MP		Ruhewas	sers	tand:	0,6	<u> </u>	m unter MP
Angaben zum P		•							10	_	
Schöpfer:		0.	A 41	_ /		Entr	ahm	etiefe: _	2,30	<u> </u>	m unter MP
Unterwasserpum	ne:)ME	1 1.							
Saugpumpe: _						Förd	lersti	rom:	10+5	_ m³/h	//l/min
Messungen wäh	rend d	er Proben	ahme					- 4			
	10	5	Zeit	[°0	0].	pH-Wert		tfähigk.* JS/cm]	O ₂ [mg/l]	Redoxpot [mV]	Förderwas- serstand [m]
Beginn Abpumpen:	111=	h / min	114	15	1	6,89	4	710	0,89	Mil	0,81
		ā•	114	15	3	6,83	3	090	271	-11-0	0,82
		:	1/15	5 15	3	6,85	à	+40	419	-11-	0,82
	ΩŽ.	п.	M-	- 15	13	618t	d	020	8140	-11-	0,82
Messwerte konstant:	⊠ ja	L nein									
				_							
					2		_				
Ende Abpumpen:	1200	h/min									
											3
* Temperaturkompensat	tion bez. a	uf 25 °C									
Angaben zur Pro		(1)	000	_							
Probenahme nach Ab	pumpen	D . O .	025		m³				150		
Farbe der Probe:	2	FAICE	05			emperatur:			200		°C
Farbe absetzbare Sto	offe:	CCIII	1AL			ne Leitfähigk	eit:		25,50	I	µS/cm
Trübung:	-	LUEF	16		Wert:				100	1	
Geruch:	÷	12.0			•	tential:			8/1	2	mV
Lufttemperatur [°C]:	Drobo	offeeeleen		Sat	iersto	н;	-		0 40		mg/l
Angaben zu den				A		Tree		Annahl		T	T
<i>Тур</i> UCL100/1L PE	Anzahl	<i>Typ</i> UCL105/250r	nl DE	Anzahl	LICL!	<i>Typ</i> 200/1L GG		Anzahl	UCL204/2	Typ	Anzahl
UCL102/250ml PE		UCL105/250r			_	200/1L GG 201/1L GG	-	1	UCL204/2		
UCL103/250ml PE	1	UCL107/250r			_	202/250mL B0	3	1	-	50mL WG	
UCL104/250ml PE		UCL108/250r				203/250mL B0	-	1		50ml steril	
100 ml PE (viereckig)		200 ml PE (vi	ereckig)			nl PE (vierecki	g)		1000ml PE	(viereckig)	
Bemerkungen:/	1, FOR	DERW4	SER	HEL	LBR	LAUL,			11.		*11
WIEDERAUST	1E6	12050	HR =	>0,60						150	US0486
Probenehmer: /	WHI		1		Pr	obenann	ahn			/	Wome
Name in Block	schrift / U	nterschrift	1	2	Da	tum Unters	chrif	03.	11.14	N. T	Mome)
Stand 00/2013			1								

Auftraggeber:	E	EBERV	LARI	y-WY	ERF	T			_ []	JCL
Projekt:	1	ALGE	STR	1 BK	7	ARN	is			
Trojekt.			J. P.	21 pc	1	7 (195				
		15	275				ach DIN 384		ALL	-1-01
Bezeichnung der Mes			3,	Probe	enahme	edatum: 3	1.10, 20	14 LISA	-Nr.: // 4 -	-51091-
Angaben zur Me Art der Messstelle:		RAMI								
Bezeichnung des Me Sohltiefe (Ist):	sspunkte	s (MP): 🛭	offene Ve _ m unte	erschlussk er MP	appe	Sonstig	es: serstand:	0,8	о _ г	m unter MP
Angaben zum Pı								•		
Schöpfer:						Entr	ahmetiefe:	$=2, \infty$	2	m unter MP
Schöpfer: Unterwasserpum	e:	C	OME	7 1						
Saugpumpe:							erstrom:	2,017	m³/h	I/min
Messungen wäh										.,
			7 oit	1	1	pH-Wert	Leitfähigk.*	4	Redoxpot	Förderwas-
Beginn Abpumpen:	121	h / min	100		2	6185	[µS/cm]	[mg/l]	[mV]	serstand [m]
- Sam Morampon.			175		え	681	5660	nna	Mig	154
			102	5' /	5	6,83	4540	1.81	-11-	1.86
			Tu -		112	0100	1515	1701		1700
Messwerte konstant:	⊠ ia	nein								
				-	2					
	103	0								
Ende Abpumpen: 📑	123	h / min								
* Temperaturkompensat	ion bez. a	uf 25 °C								
Angaben zur Pro			mal							
Probenahme nach Ab	pumpen	noi	004		m³			10 -	_	
Farbe der Probe:		6154	10			mperatur:		1013	20	°C
Farbe absetzbare Sto	ffe:	COK	AU	=======================================		e Leitfähigk	eit:	4,540)	µS/cm
Trübung:	-	PIAN	LIZ.		Wert:			618		
Geruch:	-	MUFF	16		doxpot		-	My	`	mV
Lufttemperatur [°C]:		10	5	Saı	uerstof	f: 		1184		mg/l
Angaben zu den	Prober	nflaschen								
Тур	Anzahi	Тур		Anzahl		Тур	Anzahl	_	Тур	Anzahl
JCL100/1L PE		UCL105/250			-	00/1L GG	1	UCL204/2		
JCL102/250ml PE	4	UCL106/250	_		-	01/1L GG	1	UCL205/2		
JCL103/250ml PE	1	UCL107/250			-	02/250mL B0			50mL WG	
JCL104/250ml PE		UCL108/250	_			03/250mL B0			50ml steril	
00 ml PE (viereckig)	00	200 ml PE (v	iereckig)	100	500ml	PE (viereck			E (viereckig)	
Bemerkungen: U	BRUNA	UEN HA	F	U GE	KIN	PEN O	ZULAUF	¥.:		
WIEDER AUSTI	66	1333	UHR	\rightarrow	13	Fm			12/1	S04 R/
Probenehmer:	Mill	1	1		Pro	benann	ahme Lab	or:		Sul Ble
	UNI		//		111 1			.11.10		/.

Auftraggeber:		EBR	RHA	1-05	JEV	RFT					ICI
							"-	□PNS-1	1-51091D		
Projekt:	LA	NGES	TRAI	3E	7,	ARI	ris				
						lwasser na					
Bezeichnung der Me	ssstelle	Chill	4,	Probe	nahm	edatum: 3	1.1	0. 201	LISA-	Nr.: 14.	-51091-
Angaben zur Me	essstell	e QAL	LAI RO	DINITIE	21			1	50		
Angaben zur Me Art der Messstelle: Bezeichnung des Me		KAN	i\n DI		_/5	Rohr/So	chae	ht:	-00	c Au	mm M AT ZIDALID
Bezeichnung des Me	esspunkte	s (MP):	offene Ve	erschlussk	appe	Sonstig	es.C	ال كال	TEVE	2 /40	BAICKON
Sohltiefe (Ist):				er MP		Ruhewas	sers	tand:	MA.	<u> </u>	n unter MP
Angaben zum P	robena	hmegerät							01	. ^	
Schöpfer:	_		10	VIVE		Entr	ahm	etiefe:	210	10	m unter MP
Unterwasserpum	ne:			MEI	/	(,		1	017		
Saugpumpe: _						Förd	ersti	rom:	UNT	_ m³/h	l/min
Messungen wäh	rend d	er Prober	nahme	n -		r	ι				
Beginn Abpumpen:	1240	_	Zeit	J°C	0] ,	pH-Wert	J	itfähigk.* uS/cm]	O ₂ [mg/l]	Redoxpot [mV]	Förderwas- serstand [m]
Beginn Abpumpen:	10-	h / min	//	15 15	11	4,01		33	4.80	Mit	1,84
			10	- 14	2,	414	(380	4/13	11	2,73
	П.	X									
Messwerte konstant:	⊔ ја	nein	-								
			-		20						
	- FC	7	-	_							
Ende Abpumpen:	1000	h / min		+							
											22
* Temperaturkompensa	tion bez. a	uf 25 °C									
Angaben zur Pro			000	2							
Probenahme nach At	opumpen	01181	Mill)	m³				11,0	i.	
Farbe der Probe:		HELLDI	BRAG	111		emperatur:	.,	-	200	7	°C
Farbe absetzbare Sto	offe:	CTAR	LONTO	0101		ne Leitfähigk	eit:		71	4	µS/cm
Trübung:	=	COLL	ik		Wert:				tim	9	
Geruch:		12.	5		iersto	tential:		=	7/13	1	mV
Lufttemperatur [°C]:	Drobos	ofloodbox		Sat	iersto	11.			11/10		mg/l
Angaben zu den	Anzahl	Typ	-	Anzahi		Тур		Anzahl	ī —	Тур	Anzahl
UCL100/1L PE	MILEGIII	UCL105/250		AllZdill	UCI.	200/1L GG	\dashv	Allealli	UCL204/2	-	AllZalli
UCL102/250ml PE		UCL106/250			-	201/1L GG		1	UCL205/2		
UCL103/250ml PE	1	UCL107/250			-	202/250mL B	G	1		50mL WG	
UCL104/250ml PE		UCL108/250	ml PE		UCL	203/250mL B	3		UCL401/2	50ml steril	
100 ml PE (viereckig)	-	200 ml PE (v	viereckig)		500m	nl PE (viereck	ig)		1000ml PE	(viereckig)	
Bemerkungen: [SRUUN	EN H	AT	ZU 6	ER	MGEN	Z	ULAUF			·*,
WIEDERAUSTI	15%	UO CH	R	> 2,6	I~					1×60	504 86
Probenehmer:	MAHI	1	/		T	obenann	ahn	ne Labo	r:		1/ Mancare
Name in Block	kschrift / U	nterschrift	1		Da	tum Unters	schrif	t 03	11.1	4 1	V. Thouse
		1								-	

Auftraggeber:	E	BERH	LRS.	- WER	FT						ICL
-		. 1.	A 625	-		1					Militari Bracell
Projekt:	LA	UG(LST1	ABE	- F.	/-	4RUIS					
		Probenahn	Q				och I	DIN 3840	12.12		
Bezeichnung der Me										-Nr.: 111	-51091-
Angaben zur Me	essstell	e									
Art der Messstelle:		BOHR									
Bezeichnung des Me Sohltiefe (Ist):	sspunkte	s (MP): 🛛	offene Ve	erschlussk	appe	☐ Sonstig	jes:		A =	70	
Sohltiefe (lst):	3,1	5	_ m unte	r MP		Ruhewas	serst	and:	0,1	53r	n unter MP
Angaben zum Pi	robena	hmegerät									
Schöpfer:						Entn	ahm	etiefe:	30	5	m unter MP
Schöpfer: Unterwasserpum	ie:	CC	ME	1 2							
Saugpumpe:						Förd	lerstr	om: O	075	m³/h	I/min
Messungen wäh						-1					
_			1	1 7		pH-Wert		tfähigk.*	O ₂	Redoxpot	Förderwas-
Beginn Abpumpen: 2	124	h / min	104	5 10		Pri-vveit		iS/cm]	[mg/l]	[mV]	serstand [m]
Deginii Abpumpen. 2		_ ''''	ME	0 12	19	7.03	d	900	1,00	My	man
			105	5 1	12	7.04	1	927	7.82	11-	019
			1130	W 10	Z	7.001	1	ait	OIZ	_11_	0.93
Messwerte konstant:	⊠ io	nein	10	-	10	11000		311	114	-11	~/JX
Messwerte konstant:	Ja ja	La nem		_							
								31			
	· · ·										
Ende Abpumpen: 👱	13-	h/min									
Endo / topumpon.		,									
* Temperaturkompensat	tion bez. a	uf 25 °C									
Angaben zur Pro	be		_					<u></u>			
Probenahme nach Ab		von O	<u> </u>		m³						
Farbe der Probe:	F	ARBIO.	S	Wa	sserte	emperatur:		/	13,6		°C
Farbe absetzbare Sto	offe:	OHUK		elel	ktrisch	ne Leitfähigk	eit:	/	1917		µS/cm
Trübung:		KL	FR	pH-	Wert:	_			7,01		
Geruch:	S	TARK	FAUL	Red	ogxol	tential:			M.9		mV
Lufttemperatur [°C]:		12:	5		ersto			0	72		mg/l
Angaben zu den	Probei	nflaschen									
Typ	Anzahl	Тур	_	Anzahl		Тур		Anzahl		Тур	Anzahi
UCL100/1L PE		UCL105/250r			UCL2	200/1L GG		1	UCL204/2		
UCL102/250ml PE		UCL106/250r			_	201/1L GG		1	UCL205/2		
UCL103/250ml PE	1	UCL107/250r			_	202/250mL B0	3	1	-	50mL WG	
UCL104/250ml PE		UCL108/250r				203/250mL B0				50ml steril	
100 ml PE (viereckig)		200 ml PE (vi	ereckig)		500m	nl PE (vierecki	ig)			(viereckig)	
Bemerkungen:	1. Em	RNERL	ASSEX	2 MF	116	RAU					-
LIEDER AUST	1E6	1314	UHR		213 717	3 m				1265	04 B6
Probenehmer:	11/11/	1		,	Pr	obenann	ahm	ne Labo	r:	12 000	04 136 Mouro
Name in Block	Schrift / U	nterschrift	1	2		tum Unters		0.000	11 14	1/	Moura
			/		1.0	3310		UJ.	16 17	/0.	. (00010)

Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

- 5 Prüfberichte
- 5.1 Boden
- 5.2 Grundwasser

Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

5.1 Boden

UCL Umwelt Control Labor GmbH // Köpenicker Str. 59 // 24111 Kiel // Deutschland

Schiffswerft Otto Eberhardt - Herr Alfred Eberhardt -Lange Straße 7-10 24399 Arnis

Ansprechpartner: Herr Ulrich Soltau
Telefon: 04316964130
Telefax: 0431-698787
E-Mail: ulrich.soltau@ucl-labor.de

Prüfbericht Nr.: 14-36283/1

Prüfgegenstand : 18 x Boden

Auftraggeber : Schiffswerft Otto Eberhardt, Lange Straße 7-10, 24399 Arnis

Auftrags-Nr. / Datum

Projektbezeichnung : Orientierende Untersuchung Schiffswerft Otto Eberhardt

 Probenahme am / durch
 : 05.08.2014 / UCL

 Probeneingang am / durch
 : 07.08.2014 / UCL, Münn

 Prüfzeitraum
 : 07.08.2014 - 01.09.2014

Probenbezeichnung		BS 1/2	BS 1/3	BS 1/4	Methode
	Probe-Nr.	14-36283-001	14-36283-002	14-36283-003	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	88,9	90,1	84,5	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trocken-					
rückstand					
Arsen	mg/kg	3,1		5,1	DIN EN ISO 11885;KI
Blei	mg/kg	8,0		19	DIN EN ISO 11885;KI
Cadmium	mg/kg	< 0,4		0,41	DIN EN ISO 11885;KI
Chrom gesamt	mg/kg	10,2		22,6	DIN EN ISO 11885;KI
Kupfer	mg/kg	20,6		15,1	DIN EN ISO 11885;KI
Nickel	mg/kg	6,7		14	DIN EN ISO 11885;KI
Quecksilber	mg/kg	0,16		0,20	DIN EN 1483;KI
Zink	mg/kg	44,5		48,7	DIN EN ISO 11885;KI
KW-Index, mobil	mg/kg	< 50	< 50	< 50	LAGA KW04;KI
Kohlenwasserstoffindex	mg/kg	< 50	< 50	< 50	LAGA KW04;KI
KW-Typ		=	-	-	LAGA KW04;KI
BTX					
Benzol*	mg/kg			< 0,01	DIN ISO 22155;KI
Toluol*	mg/kg			< 0,01	DIN ISO 22155;KI
Ethylbenzol*	mg/kg			< 0,01	DIN ISO 22155;KI
m- und p-Xylol*	mg/kg			< 0,01	DIN ISO 22155;KI
o-Xylol*	mg/kg			< 0,01	DIN ISO 22155;KI
Isopropylbenzol (Cumol)	mg/kg			< 0,01	DIN ISO 22155;KI
1,2,3-Trimethylbenzol	mg/kg			< 0,01	DIN ISO 22155;KI
1,2,4-Trimethylbenzol	mg/kg			< 0,01	DIN ISO 22155;KI
1,3,5-Trimethylbenzol	mg/kg			< 0,01	DIN ISO 22155;KI
Styrol	mg/kg			< 0,050	DIN ISO 22155;KI
p-Isopropyltoluol	mg/kg			< 0,01	DIN ISO 22155;KI
Durol	mg/kg			< 0,01	DIN ISO 22155;KI
*Summe bestimmbarer BTEX	mg/kg			0	DIN ISO 22155;KI

UCL Umwelt Control Labor GmbH // Josef-Rethmann-Str. 5 // 44536 Lünen // Deutschland // T +49 2306 2409-0 // F +49 2306 2409-10 // info@ucl-labor.de ucl-labor.de // Amtsgericht Dortmund, HRB 17247 // Geschäftsführer: Jürgen Cornelissen, Oliver Koenen, Martin Langkamp

Seite 2 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 1/2	BS 1/3	BS 1/4	Methode
	robe-Nr.	14-36283-001	14-36283-002	14-36283-003	
Parameter	Einheit				
Analyse der Originalprobe		22.2	22.4	0.4.5	DW 51 (0000 (00) (4)
Trockenrückstand 105°C	%	88,9	90,1	84,5	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrückstand LHKW					
				- 0.100	DIN IOO OOAFF.KI
Dichlormethan	mg/kg			< 0,100	DIN ISO 22155;KI
trans-1,2-Dichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
cis-1,2-Dichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
Trichlormethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,2-Dichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,1,1-Trichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,1,2-Trichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
Tetrachlormethan	mg/kg			< 0,05	DIN ISO 22155;KI
Trichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
Tetrachlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
1,1-Dichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,1-Dichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
Vinylchlorid/Chlorethen	mg/kg			< 0,1	DIN ISO 22155;KI
Summe best. LHKW	mg/kg			0	DIN ISO 22155;KI
PAK		2.4		0.4	
Naphthalin	mg/kg	< 0,1		< 0,1	DIN ISO 18287;KI
Acenaphthylen	mg/kg	< 0,1		< 0,1	DIN ISO 18287;KI
Acenaphthen	mg/kg	< 0,2		< 0,2	DIN ISO 18287;KI
Fluoren	mg/kg	< 0,05		< 0,05	DIN ISO 18287;KI
Phenanthren	mg/kg	< 0,01		0,606	DIN ISO 18287;KI
Anthracen	mg/kg	< 0,01		0,157	DIN ISO 18287;KI
Fluoranthen	mg/kg	0,058		1,16	DIN ISO 18287;KI
Pyren	mg/kg	0,057		0,830	DIN ISO 18287;KI
Benzo[a]anthracen	mg/kg	0,019		0,430	DIN ISO 18287;KI
Chrysen	mg/kg	0,030		0,506	DIN ISO 18287;KI
Benzo[b]fluoranthen*	mg/kg	0,029		0,351	DIN ISO 18287;KI
Benzo[k]fluoranthen*	mg/kg	0,022		0,290	DIN ISO 18287;KI
Benzo[a]pyren	mg/kg	0,031		0,405	DIN ISO 18287;KI
Dibenz[ah]anthracen	mg/kg	< 0,02		0,052	DIN ISO 18287;KI
Benzo[ghi]perylen*	mg/kg	< 0,05		0,173	DIN ISO 18287;KI
Indeno[1,2,3-cd]pyren*	mg/kg	0,016		0,188	DIN ISO 18287;KI
Summe best. PAK (EPA)	mg/kg	0,262		5,15	DIN ISO 18287;KI
PCB					
PCB-028	mg/kg	< 0,02		< 0,02	DIN 38414 S20;KI
PCB-052	mg/kg	< 0,02		< 0,02	DIN 38414 S20;KI
PCB-101	mg/kg	< 0,02		< 0,02	DIN 38414 S20;KI
PCB-118	mg/kg	< 0,02		< 0,02	DIN 38414 S20;KI
PCB-138	mg/kg	< 0,02		< 0,02	DIN 38414 S20;KI
PCB-153	mg/kg	< 0,02		< 0,02	DIN 38414 S20;KI
PCB-180	mg/kg	< 0,020		< 0,020	DIN 38414 S20;KI
Summe best. PCB-6	mg/kg	0		0	DIN 38414 S20;KI
bestimmbare PCB ges.	mg/kg	0		0	DIN 38414 S20;KI
Hinweise zur Probenvorbereitung					
Säureaufschluss		+		+	DIN EN 13346 (S7a);KI

Seite 3 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung	BS 1/5	BS 1/7	BS 2/1	Methode
Probe-Nr.	14-36283-004	14-36283-005	14-36283-006	
Parameter Einheit				
Analyse der Originalprobe				
Trockenrückstand 105°C %	80,6	67,6	86,6	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrückstand				
Arsen mg/kg			< 2,5	DIN EN ISO 11885;KI
Blei mg/kg			4,1	DIN EN ISO 11885;KI
Cadmium mg/kg			0,62	DIN EN ISO 11885;KI
Chrom gesamt mg/kg			8,98	DIN EN ISO 11885;KI
Kupfer mg/kg			15,8	DIN EN ISO 11885;KI
Nickel mg/kg			4,8	DIN EN ISO 11885;KI
Quecksilber mg/kg			< 0,05	DIN EN 1483;KI
Zink mg/kg			21,5	DIN EN ISO 11885;KI
KW-Index, mobil mg/kg	< 50		83	LAGA KW04;KI
Kohlenwasserstoffindex mg/kg	< 50		85	LAGA KW04;KI
KW-Typ	-		MD	LAGA KW04;KI
PAK				
Naphthalin mg/kg			< 0,1	DIN ISO 18287;KI
Acenaphthylen mg/kg			< 0,1	DIN ISO 18287;KI
Acenaphthen mg/kg			< 0,2	DIN ISO 18287;KI
Fluoren mg/kg			< 0,05	DIN ISO 18287;KI
Phenanthren mg/kg			< 0,01	DIN ISO 18287;KI
Anthracen mg/kg			< 0,01	DIN ISO 18287;KI
Fluoranthen mg/kg			< 0,05	DIN ISO 18287;KI
Pyren mg/kg			< 0,01	DIN ISO 18287;KI
Benzo[a]anthracen mg/kg			< 0,01	DIN ISO 18287;KI
Chrysen mg/kg			< 0,01	DIN ISO 18287;KI
Benzo[b]fluoranthen* mg/kg			< 0,01	DIN ISO 18287;KI
Benzo[k]fluoranthen* mg/kg			< 0,02	DIN ISO 18287;KI
Benzo[a]pyren mg/kg			< 0,01	DIN ISO 18287;KI
Dibenz[ah]anthracen mg/kg			< 0,02	DIN ISO 18287;KI
Benzo[ghi]perylen* mg/kg			< 0,05	DIN ISO 18287;KI
Indeno[1,2,3-cd]pyren* mg/kg			< 0,01	DIN ISO 18287;KI
Summe best. PAK (EPA) mg/kg			0	DIN ISO 18287;KI
PCB				
PCB-028 mg/kg			< 0,02	DIN 38414 S20;KI
PCB-052 mg/kg			< 0,02	DIN 38414 S20;KI
PCB-101 mg/kg			< 0,02	DIN 38414 S20;KI
PCB-118 mg/kg			< 0,02	DIN 38414 S20;KI
PCB-138 mg/kg			< 0,02	DIN 38414 S20;KI
PCB-153 mg/kg			< 0,02	DIN 38414 S20;KI
PCB-180 mg/kg			< 0,020	DIN 38414 S20;KI
Summe best. PCB-6 mg/kg			0	DIN 38414 S20;KI
bestimmbare PCB ges. mg/kg			0	DIN 38414 S20;KI
Zinnorganische Verbindungen				,
Tributylzinn μg/kg		< 1,0		DIN EN ISO 23161 (E);FV
Hinweise zur Probenvorbereitung		, -		2 2 ()// 2
Säureaufschluss			+	DIN EN 13346 (S7a);KI

Seite 4 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 2/3	BS 2/4	BS 2/5	Methode
	Probe-Nr.	14-36283-007	14-36283-008	14-36283-009	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	83,1	85.0	70.6	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrück	stand		, -		
Arsen	mg/kg	3,3			DIN EN ISO 11885;KI
Blei	mg/kg	67			DIN EN ISO 11885;KI
Cadmium	mg/kg	< 0,4			DIN EN ISO 11885;KI
Chrom gesamt	mg/kg	7,70			DIN EN ISO 11885;KI
Kupfer	mg/kg	10,1			DIN EN ISO 11885;KI
Nickel	mg/kg	4,7			DIN EN ISO 11885;KI
Quecksilber	mg/kg	0,34			DIN EN 1483;KI
Zink	mg/kg	20,1			DIN EN ISO 11885;KI
KW-Index, mobil	mg/kg	< 50	< 50	< 50	LAGA KW04;KI
Kohlenwasserstoffindex	mg/kg	< 50	< 50	< 50	LAGA KW04;KI
KW-Typ		-	-	-	LAGA KW04;KI
BTX					
Benzol*	mg/kg	0,011			DIN ISO 22155;KI
Toluol*	mg/kg	< 0,01			DIN ISO 22155;KI
Ethylbenzol*	mg/kg	< 0,01			DIN ISO 22155;KI
m- und p-Xylol*	mg/kg	0,028			DIN ISO 22155;KI
o-Xylol*	mg/kg	< 0,01			DIN ISO 22155;KI
Isopropylbenzol (Cumol)	mg/kg	< 0,01			DIN ISO 22155;KI
1,2,3-Trimethylbenzol	mg/kg	< 0,01			DIN ISO 22155;KI
1,2,4-Trimethylbenzol	mg/kg	0,086			DIN ISO 22155;KI
1,3,5-Trimethylbenzol	mg/kg	< 0,01			DIN ISO 22155;KI
Styrol	mg/kg	< 0,050			DIN ISO 22155;KI
p-Isopropyltoluol	mg/kg	< 0,01			DIN ISO 22155;KI
Durol	mg/kg	0,021			DIN ISO 22155;KI
*Summe bestimmbarer BTEX	mg/kg	0,039			DIN ISO 22155;KI
LHKW					
Dichlormethan	mg/kg	< 0,100			DIN ISO 22155;KI
trans-1,2-Dichlorethen	mg/kg	< 0,05			DIN ISO 22155;KI
cis-1,2-Dichlorethen	mg/kg	< 0,05			DIN ISO 22155;KI
Trichlormethan	mg/kg	< 0,05			DIN ISO 22155;KI
1,2-Dichlorethan	mg/kg	< 0,05			DIN ISO 22155;KI
1,1,1-Trichlorethan	mg/kg	< 0,05			DIN ISO 22155;KI
1,1,2-Trichlorethan	mg/kg	< 0,05			DIN ISO 22155;KI
Tetrachlormethan	mg/kg	< 0,05			DIN ISO 22155;KI
Trichlorethen	mg/kg	< 0,05			DIN ISO 22155;KI
Tetrachlorethen	mg/kg	< 0,05			DIN ISO 22155;KI
1,1-Dichlorethan	mg/kg	< 0,05			DIN ISO 22155;KI
1,1-Dichlorethen	mg/kg	< 0,05			DIN ISO 22155;KI
Vinylchlorid/Chlorethen	mg/kg	< 0,1			DIN ISO 22155;KI
Summe best. LHKW	mg/kg	0			DIN ISO 22155;KI

Seite 5 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 2/3	BS 2/4	BS 2/5	Methode
_	Probe-Nr.	14-36283-007	14-36283-008	14-36283-009	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	83,1	85,0	70,6	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrücks	tand				
PAK					
Naphthalin	mg/kg	< 0,1			DIN ISO 18287;KI
Acenaphthylen	mg/kg	< 0,1			DIN ISO 18287;KI
Acenaphthen	mg/kg	< 0,2			DIN ISO 18287;KI
Fluoren	mg/kg	< 0,05			DIN ISO 18287;KI
Phenanthren	mg/kg	< 0,01			DIN ISO 18287;KI
Anthracen	mg/kg	< 0,01			DIN ISO 18287;KI
Fluoranthen	mg/kg	< 0,05			DIN ISO 18287;KI
Pyren	mg/kg	< 0,01			DIN ISO 18287;KI
Benzo[a]anthracen	mg/kg	< 0,01			DIN ISO 18287;KI
Chrysen	mg/kg	< 0,01			DIN ISO 18287;KI
Benzo[b]fluoranthen*	mg/kg	< 0,01			DIN ISO 18287;KI
Benzo[k]fluoranthen*	mg/kg	< 0,02			DIN ISO 18287;KI
Benzo[a]pyren	mg/kg	< 0,01			DIN ISO 18287;KI
Dibenz[ah]anthracen	mg/kg	< 0,02			DIN ISO 18287;KI
Benzo[ghi]perylen*	mg/kg	< 0,05			DIN ISO 18287;KI
Indeno[1,2,3-cd]pyren*	mg/kg	< 0,01			DIN ISO 18287;KI
Summe best. PAK (EPA)	mg/kg	0			DIN ISO 18287;KI
PCB					
PCB-028	mg/kg	< 0,02			DIN 38414 S20;KI
PCB-052	mg/kg	< 0,02			DIN 38414 S20;KI
PCB-101	mg/kg	< 0,02			DIN 38414 S20;KI
PCB-118	mg/kg	< 0,02			DIN 38414 S20;KI
PCB-138	mg/kg	< 0,02			DIN 38414 S20;KI
PCB-153	mg/kg	< 0,02			DIN 38414 S20;KI
PCB-180	mg/kg	< 0,020			DIN 38414 S20;KI
Summe best. PCB-6	mg/kg	0			DIN 38414 S20;KI
bestimmbare PCB ges.	mg/kg	0			DIN 38414 S20;KI
Hinweise zur Probenvorbereitung					
Säureaufschluss		+			DIN EN 13346 (S7a);KI

Seite 6 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 2/7	BS 3/1	BS 3/2	Methode
1 Tobonisozoromang	Probe-Nr.	14-36283-010	14-36283-011	14-36283-012	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	70,8	90.6	86,8	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrücksta	and		,-		, ,,
Arsen	mg/kg			5,3	DIN EN ISO 11885;KI
Blei	mg/kg			13	DIN EN ISO 11885;KI
Cadmium	mg/kg			< 0,4	DIN EN ISO 11885;KI
Chrom gesamt	mg/kg			25,3	DIN EN ISO 11885;KI
Kupfer	mg/kg			15,9	DIN EN ISO 11885;KI
Nickel	mg/kg			16	DIN EN ISO 11885;KI
Quecksilber	mg/kg			0,30	DIN EN 1483;KI
Zink	mg/kg			49,5	DIN EN ISO 11885;KI
KW-Index, mobil	mg/kg		< 50	< 50	LAGA KW04;KI
Kohlenwasserstoffindex	mg/kg		< 50	< 50	LAGA KW04;KI
KW-Typ			-	-	LAGA KW04;KI
BTX					
Benzol*	mg/kg	< 0,01		< 0,01	DIN ISO 22155;KI
Toluol*	mg/kg	< 0,01		< 0,01	DIN ISO 22155;KI
Ethylbenzol*	mg/kg	< 0,01		0,010	DIN ISO 22155;KI
m- und p-Xylol*	mg/kg	< 0,01		0,019	DIN ISO 22155;KI
o-Xylol*	mg/kg	< 0,01		< 0,01	DIN ISO 22155;KI
Isopropylbenzol (Cumol)	mg/kg	< 0,01		< 0,01	DIN ISO 22155;KI
1,2,3-Trimethylbenzol	mg/kg	< 0,01		0,012	DIN ISO 22155;KI
1,2,4-Trimethylbenzol	mg/kg	< 0,01		0,026	DIN ISO 22155;KI
1,3,5-Trimethylbenzol	mg/kg	< 0,01		< 0,01	DIN ISO 22155;KI
Styrol	mg/kg	< 0,050		< 0,050	DIN ISO 22155;KI
p-Isopropyltoluol	mg/kg	< 0,01		< 0,01	DIN ISO 22155;KI
Durol	mg/kg	< 0,01		0,018	DIN ISO 22155;KI
*Summe bestimmbarer BTEX	mg/kg	0		0,029	DIN ISO 22155;KI
LHKW					
Dichlormethan	mg/kg	< 0,100		< 0,100	DIN ISO 22155;KI
trans-1,2-Dichlorethen	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
cis-1,2-Dichlorethen	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
Trichlormethan	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
1,2-Dichlorethan	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
1,1,1-Trichlorethan	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
1,1,2-Trichlorethan	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
Tetrachlormethan	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
Trichlorethen	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
Tetrachlorethen	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
1,1-Dichlorethan	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
1,1-Dichlorethen	mg/kg	< 0,05		< 0,05	DIN ISO 22155;KI
Vinylchlorid/Chlorethen	mg/kg	< 0,1		< 0,1	DIN ISO 22155;KI
Summe best. LHKW	mg/kg	0		0	DIN ISO 22155;KI

Seite 7 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 2/7	BS 3/1	BS 3/2	Methode
_	Probe-Nr.	14-36283-010	14-36283-011	14-36283-012	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	70,8	90,6	86,8	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrüg	kstand				
PAK					
Naphthalin	mg/kg			< 0,1	DIN ISO 18287;KI
Acenaphthylen	mg/kg			< 0,1	DIN ISO 18287;KI
Acenaphthen	mg/kg			< 0,2	DIN ISO 18287;KI
Fluoren	mg/kg			< 0,05	DIN ISO 18287;KI
Phenanthren	mg/kg			0,040	DIN ISO 18287;KI
Anthracen	mg/kg			0,031	DIN ISO 18287;KI
Fluoranthen	mg/kg			0,267	DIN ISO 18287;KI
Pyren	mg/kg			0,205	DIN ISO 18287;KI
Benzo[a]anthracen	mg/kg			0,111	DIN ISO 18287;KI
Chrysen	mg/kg			0,147	DIN ISO 18287;KI
Benzo[b]fluoranthen*	mg/kg			0,106	DIN ISO 18287;KI
Benzo[k]fluoranthen*	mg/kg			0,083	DIN ISO 18287;KI
Benzo[a]pyren	mg/kg			0,117	DIN ISO 18287;KI
Dibenz[ah]anthracen	mg/kg			< 0,02	DIN ISO 18287;KI
Benzo[ghi]perylen*	mg/kg			0,059	DIN ISO 18287;KI
Indeno[1,2,3-cd]pyren*	mg/kg			0,056	DIN ISO 18287;KI
Summe best. PAK (EPA)	mg/kg			1,22	DIN ISO 18287;KI
PCB					
PCB-028	mg/kg			< 0,02	DIN 38414 S20;KI
PCB-052	mg/kg			< 0,02	DIN 38414 S20;KI
PCB-101	mg/kg			< 0,02	DIN 38414 S20;KI
PCB-118	mg/kg			< 0,02	DIN 38414 S20;KI
PCB-138	mg/kg			< 0,02	DIN 38414 S20;KI
PCB-153	mg/kg			< 0,02	DIN 38414 S20;KI
PCB-180	mg/kg			< 0,020	DIN 38414 S20;KI
Summe best. PCB-6	mg/kg			0	DIN 38414 S20;KI
bestimmbare PCB ges.	mg/kg			0	DIN 38414 S20;KI
Zinnorganische Verbindungen					
Tributylzinn	μg/kg	< 1,0			DIN EN ISO 23161 (E);FV
Hinweise zur Probenvorbereitun	g				
Säureaufschluss		<u> </u>		+	DIN EN 13346 (S7a);KI

Seite 8 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 3/3	BS 3/4	BS 3/5	Methode
1 1050115020101111ang	Probe-Nr.	14-36283-013	14-36283-014	14-36283-015	ourous
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	85,1	53.6	84.0	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrück	stand		, -		
Arsen	mg/kg		7,9		DIN EN ISO 11885;KI
Blei	mg/kg		380		DIN EN ISO 11885;KI
Cadmium	mg/kg		< 0,4		DIN EN ISO 11885;KI
Chrom gesamt	mg/kg		13,6		DIN EN ISO 11885;KI
Kupfer	mg/kg		132		DIN EN ISO 11885;KI
Nickel	mg/kg		11		DIN EN ISO 11885;KI
Quecksilber	mg/kg		1,5		DIN EN 1483;KI
Zink	mg/kg		35,9		DIN EN ISO 11885;KI
KW-Index, mobil	mg/kg	220	< 50	< 50	LAGA KW04;KI
Kohlenwasserstoffindex	mg/kg	230	< 50	< 50	LAGA KW04;KI
KW-Typ		MD	-	-	LAGA KW04;KI
BTX					
Benzol*	mg/kg		< 0,01		DIN ISO 22155;KI
Toluol*	mg/kg		< 0,01		DIN ISO 22155;KI
Ethylbenzol*	mg/kg		< 0,01		DIN ISO 22155;KI
m- und p-Xylol*	mg/kg		0,042		DIN ISO 22155;KI
o-Xylol*	mg/kg		< 0,01		DIN ISO 22155;KI
Isopropylbenzol (Cumol)	mg/kg		0,013		DIN ISO 22155;KI
1,2,3-Trimethylbenzol	mg/kg		0,023		DIN ISO 22155;KI
1,2,4-Trimethylbenzol	mg/kg		0,608		DIN ISO 22155;KI
1,3,5-Trimethylbenzol	mg/kg		0,085		DIN ISO 22155;KI
Styrol	mg/kg		< 0,050		DIN ISO 22155;KI
p-Isopropyltoluol	mg/kg		< 0,01		DIN ISO 22155;KI
Durol	mg/kg		0,098		DIN ISO 22155;KI
*Summe bestimmbarer BTEX	mg/kg		0,042		DIN ISO 22155;KI
LHKW					
Dichlormethan	mg/kg		< 0,100		DIN ISO 22155;KI
trans-1,2-Dichlorethen	mg/kg		< 0,05		DIN ISO 22155;KI
cis-1,2-Dichlorethen	mg/kg		< 0,05		DIN ISO 22155;KI
Trichlormethan	mg/kg		< 0,05		DIN ISO 22155;KI
1,2-Dichlorethan	mg/kg		< 0,05		DIN ISO 22155;KI
1,1,1-Trichlorethan	mg/kg		< 0,05		DIN ISO 22155;KI
1,1,2-Trichlorethan	mg/kg		< 0,05		DIN ISO 22155;KI
Tetrachlormethan	mg/kg		< 0,05		DIN ISO 22155;KI
Trichlorethen	mg/kg		< 0,05		DIN ISO 22155;KI
Tetrachlorethen	mg/kg		< 0,05		DIN ISO 22155;KI
1,1-Dichlorethan	mg/kg		< 0,05		DIN ISO 22155;KI
1,1-Dichlorethen	mg/kg		< 0,05		DIN ISO 22155;KI
Vinylchlorid/Chlorethen	mg/kg		< 0,1		DIN ISO 22155;KI
Summe best. LHKW	mg/kg		0		DIN ISO 22155;KI

Seite 9 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 3/3	BS 3/4	BS 3/5	Methode
	Probe-Nr.	14-36283-013	14-36283-014	14-36283-015	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	85,1	53,6	84,0	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrücks	tand				
PAK					
Naphthalin	mg/kg		< 0,1		DIN ISO 18287;KI
Acenaphthylen	mg/kg		< 0,1		DIN ISO 18287;KI
Acenaphthen	mg/kg		< 0,2		DIN ISO 18287;KI
Fluoren	mg/kg		< 0,05		DIN ISO 18287;KI
Phenanthren	mg/kg		0,019		DIN ISO 18287;KI
Anthracen	mg/kg		< 0,01		DIN ISO 18287;KI
Fluoranthen	mg/kg		< 0,05		DIN ISO 18287;KI
Pyren	mg/kg		0,039		DIN ISO 18287;KI
Benzo[a]anthracen	mg/kg		0,025		DIN ISO 18287;KI
Chrysen	mg/kg		0,035		DIN ISO 18287;KI
Benzo[b]fluoranthen*	mg/kg		0,032		DIN ISO 18287;KI
Benzo[k]fluoranthen*	mg/kg		0,028		DIN ISO 18287;KI
Benzo[a]pyren	mg/kg		0,035		DIN ISO 18287;KI
Dibenz[ah]anthracen	mg/kg		< 0,02		DIN ISO 18287;KI
Benzo[ghi]perylen*	mg/kg		< 0,05		DIN ISO 18287;KI
Indeno[1,2,3-cd]pyren*	mg/kg		0,019		DIN ISO 18287;KI
Summe best. PAK (EPA)	mg/kg		0,232		DIN ISO 18287;KI
PCB					
PCB-028	mg/kg		< 0,02		DIN 38414 S20;KI
PCB-052	mg/kg		< 0,02		DIN 38414 S20;KI
PCB-101	mg/kg		< 0,02		DIN 38414 S20;KI
PCB-118	mg/kg		< 0,02		DIN 38414 S20;KI
PCB-138	mg/kg		< 0,02		DIN 38414 S20;KI
PCB-153	mg/kg		< 0,02		DIN 38414 S20;KI
PCB-180	mg/kg		< 0,020		DIN 38414 S20;KI
Summe best. PCB-6	mg/kg		0		DIN 38414 S20;KI
bestimmbare PCB ges.	mg/kg		0		DIN 38414 S20;KI
Zinnorganische Verbindungen					
Tributylzinn	μg/kg		< 1,0		DIN EN ISO 23161 (E);FV
Hinweise zur Probenvorbereitung					
Säureaufschluss			+		DIN EN 13346 (S7a);KI

Seite 10 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 4/2	BS 4/4	BS 4/7	Methode
	Probe-Nr.	14-36283-016	14-36283-017	14-36283-018	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	84,8	86,3	86,8	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrücks	stand	·			·
Arsen	mg/kg	7,3	3,8		DIN EN ISO 11885;KI
Blei	mg/kg	6,7	6,3		DIN EN ISO 11885;KI
Cadmium	mg/kg	< 0,4	< 0,4		DIN EN ISO 11885;KI
Chrom gesamt	mg/kg	30,3	12,1		DIN EN ISO 11885;KI
Kupfer	mg/kg	13,5	8,59		DIN EN ISO 11885;KI
Nickel	mg/kg	19	9,3		DIN EN ISO 11885;KI
Quecksilber	mg/kg	0,061	< 0,05		DIN EN 1483;KI
Zink	mg/kg	41,1	28,5		DIN EN ISO 11885;KI
KW-Index, mobil	mg/kg	< 50	< 50	< 50	LAGA KW04;KI
Kohlenwasserstoffindex	mg/kg	< 50	< 50	< 50	LAGA KW04;KI
KW-Typ		-	-	-	LAGA KW04;KI
BTX					
Benzol*	mg/kg			< 0,01	DIN ISO 22155;KI
Toluol*	mg/kg			< 0,01	DIN ISO 22155;KI
Ethylbenzol*	mg/kg			< 0,01	DIN ISO 22155;KI
m- und p-Xylol*	mg/kg			< 0,01	DIN ISO 22155;KI
o-Xylol*	mg/kg			< 0,01	DIN ISO 22155;KI
Isopropylbenzol (Cumol)	mg/kg			< 0,01	DIN ISO 22155;KI
1,2,3-Trimethylbenzol	mg/kg			< 0,01	DIN ISO 22155;KI
1,2,4-Trimethylbenzol	mg/kg			< 0,01	DIN ISO 22155;KI
1,3,5-Trimethylbenzol	mg/kg			< 0,01	DIN ISO 22155;KI
Styrol	mg/kg			< 0,050	DIN ISO 22155;KI
p-Isopropyltoluol	mg/kg			< 0,01	DIN ISO 22155;KI
Durol	mg/kg			< 0,01	DIN ISO 22155;KI
*Summe bestimmbarer BTEX	mg/kg			0	DIN ISO 22155;KI
LHKW					
Dichlormethan	mg/kg			< 0,100	DIN ISO 22155;KI
trans-1,2-Dichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
cis-1,2-Dichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
Trichlormethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,2-Dichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,1,1-Trichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,1,2-Trichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
Tetrachlormethan	mg/kg			< 0,05	DIN ISO 22155;KI
Trichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
Tetrachlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
1,1-Dichlorethan	mg/kg			< 0,05	DIN ISO 22155;KI
1,1-Dichlorethen	mg/kg			< 0,05	DIN ISO 22155;KI
Vinylchlorid/Chlorethen	mg/kg			< 0,1	DIN ISO 22155;KI
Summe best. LHKW	mg/kg			0	DIN ISO 22155;KI

Seite 11 von 11 zum Prüfbericht Nr.: 14-36283 20141119-9135170

Probenbezeichnung		BS 4/2	BS 4/4	BS 4/7	Methode
_	Probe-Nr.	14-36283-016	14-36283-017	14-36283-018	
Parameter	Einheit				
Analyse der Originalprobe					
Trockenrückstand 105°C	%	84,8	86,3	86,8	DIN EN 12880 (S2a);KI
Analyse bez. auf den Trockenrück	stand				
PAK					
Naphthalin	mg/kg	< 0,1	< 0,1		DIN ISO 18287;KI
Acenaphthylen	mg/kg	< 0,1	< 0,1		DIN ISO 18287;KI
Acenaphthen	mg/kg	< 0,2	< 0,2		DIN ISO 18287;KI
Fluoren	mg/kg	< 0,05	< 0,05		DIN ISO 18287;KI
Phenanthren	mg/kg	< 0,01	< 0,01		DIN ISO 18287;KI
Anthracen	mg/kg	< 0,01	< 0,01		DIN ISO 18287;KI
Fluoranthen	mg/kg	< 0,05	< 0,05		DIN ISO 18287;KI
Pyren	mg/kg	0,013	< 0,01		DIN ISO 18287;KI
Benzo[a]anthracen	mg/kg	0,012	< 0,01		DIN ISO 18287;KI
Chrysen	mg/kg	0,020	< 0,01		DIN ISO 18287;KI
Benzo[b]fluoranthen*	mg/kg	0,015	< 0,01		DIN ISO 18287;KI
Benzo[k]fluoranthen*	mg/kg	< 0,02	< 0,02		DIN ISO 18287;KI
Benzo[a]pyren	mg/kg	0,018	< 0,01		DIN ISO 18287;KI
Dibenz[ah]anthracen	mg/kg	< 0,02	< 0,02		DIN ISO 18287;KI
Benzo[ghi]perylen*	mg/kg	< 0,05	< 0,05		DIN ISO 18287;KI
Indeno[1,2,3-cd]pyren*	mg/kg	< 0,01	< 0,01		DIN ISO 18287;KI
Summe best. PAK (EPA)	mg/kg	0,078	0		DIN ISO 18287;KI
PCB					
PCB-028	mg/kg	< 0,02	< 0,02		DIN 38414 S20;KI
PCB-052	mg/kg	< 0,02	< 0,02		DIN 38414 S20;KI
PCB-101	mg/kg	< 0,02	< 0,02		DIN 38414 S20;KI
PCB-118	mg/kg	< 0,02	< 0,02		DIN 38414 S20;KI
PCB-138	mg/kg	< 0,02	< 0,02		DIN 38414 S20;KI
PCB-153	mg/kg	< 0,02	< 0,02		DIN 38414 S20;KI
PCB-180	mg/kg	< 0,020	< 0,020		DIN 38414 S20;KI
Summe best. PCB-6	mg/kg	0	0		DIN 38414 S20;KI
bestimmbare PCB ges.	mg/kg	0	0		DIN 38414 S20;KI
Zinnorganische Verbindungen					
Tributylzinn	μg/kg	< 1,0			DIN EN ISO 23161 (E);F
Hinweise zur Probenvorbereitung					
Säureaufschluss		+	+		DIN EN 13346 (S7a);KI

Kiel, dep 01.09.2014

i.V. Dipl.-Ing. agr. Ulrich Soltau (Projektleiter)

GBA LABORGRUPPE - WISSEN WAS DRIN IST...

GBA GESELLSCHAFT FÜR BIOANALYTIK MBH Flensburger Straße 15 · 25421 Pinneberg

UCL Umwelt Control Labor Nord GmbH

Köpenicker Str. 59

24111 Kiel

Prüfbericht-Nr.: 2014P513852 / 1

Auftraggeber	UCL Umwelt Control Labor Nord GmbH
Eingangsdatum	15.08.2014
Projekt	Alig. Auftragsproben
Material	Boden
Kennzeichnung	siehe Tabelle
Auftrag	14-36283
Verpackung	PE-Dose
Probenmenge	ca. 100 g
Auftragsnummer	14508079
Probenahme	durch den Auftraggeber
Probentransport	Kurier
Labor	GBA Gesellschaft für Bioanalytik mbH
Analysenbeginn / -ende	15.08.2014 - 21.08.2014
Methoden	siehe letzte Seite
Unteraufträge	keine
Bemerkung	
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.

Pinneberg, 21.08.2014

A. Thomas Irion

(Laborleiter)

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Selte 1 von 3 zu Profbericht-Nr.: 2014P513852 / 1

Prüfbericht-Nr.: 2014P513852 / 1

Allg. Auftragsproben

Auftrag		14508079	14508079	14508079	14508079
Probe-Nr.		001	002	003	004
Material		Boden	Boden	Boden	Boden
Probenbezeichnung		14-36283-005	14-36283-010	14-36283-014	14-36283-016
Probemenge		ca. 100 g	ca. 100 g	ca. 100 g	ca. 100 g
Probeneingang		15.08.2014	15.08.2014	15.08.2014	15.08.2014
Analysenergebnisse	Einheit				
Trockenrückstand	Masse-%	62,4	69,8	70,8	84,0
Zinnorganische Verbindungen			60	0.	37
Monobutylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Dibutylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Monophenylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Tributylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Monooktylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Tetrabutylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Diphenylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Dioktylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Triphenylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0
Tricyclohexylzinn-Kation	μg/kg TM	<1,0	<1,0	<1,0	<1,0

Prüfbericht-Nr.: 2014P513852 / 1

Allg. Auftragsproben

Angewandte Verfahren und Bestimmungsgrenzen

Parameter	Bestimmungs-	Einheit	Methode
_	grenze		
Trockenrückstand	0,40	Masse-%	DIN ISO 11465°
Zinnorganische Verbindungen			
Monobutylzinn-Kation	1,0	μg/kg TM	DIN EN ISO 23161 (E) ^a
Dibutylzinn-Kation	1,0	µg/kg TM	DIN EN ISO 23161 (E) ^a
Monophenylzinn-Kation	1,0	μg/kg TM	DIN EN ISO 23161 (E)*
Tributylzinn-Kation	1,0	µg/kg TM	DIN EN ISO 23161 (E)°
Monooktylzinn-Kation	1,0	μg/kg TM	DIN EN ISO 23161 (E) ^a
Tetrabutylzinn-Kation	1,0	μg/kg TM	DIN EN ISO 23161 (E) ^a
Diphenylzinn-Kation	1,0	μg/kg TM	DIN EN ISO 23161 (E) ^a
Dioktylzinn-Kation	1,0	µg/kg TM	DIN EN ISO 23161 (E)*
Triphenylzinn-Kation	1,0	μg/kg TM	DIN EN ISO 23161 (E) ^a
Tricyclohexylzinn-Kation	1,0	μg/kg TM	DIN EN ISO 23161 (E) ^a

Die mit * gekennzeichneten Verfahren sind akkreditierte Verfahren. Die Bestimmungsgrenzen können matrixbedingt variieren.

Anlagen zum Bericht: Orientierende Untersuchung des Standortes Schiffswerft Otto Eberhardt

5.2 Grundwasser

UCL Umwelt Control Labor GmbH // Köpenicker Str. 59 // 24111 Kiel // Deutschland

Schiffswerft Otto Eberhardt Lange Straße 7-10 24399 Arnis

Ansprechpartner: Herr Ulrich Soltau
Telefon: 04316964130
Telefax: 0431-698787
E-Mail: ulrich.soltau@ucl-labor.de

Prüfbericht Nr.: 14-38024/1

Prüfgegenstand : 4 x Grundwasser

Auftraggeber : Schiffswerft Otto Eberhardt, Lange Straße 7-10, 24399 Arnis

Auftrags-Nr. / Datum

Projektbezeichnung

 Probenahme am / durch
 : 18.08.2014 / UCL, Münn

 Probeneingang am / durch
 : 18.08.2014 / UCL, Münn

 Prüfzeitraum
 : 19.08.2014 - 01.09.2014

Probenbezeichnung		GWM 1	GWM 2	GWM 3	GWM 4	Methode
_	Probe-Nr.	14-38024-001	14-38024-002	14-38024-003	14-38024-004	
Parameter	Einheit					
Analyse der Originalprobe						
Arsen	μg/l	20,1	< 5	< 5	< 5	DIN EN ISO 11885;KI
Blei	μg/l	< 5	< 5	< 5	< 5	DIN EN ISO 11885;KI
Cadmium	μg/l	< 0,4	< 0,4	< 0,4	< 0,4	DIN EN ISO 11885;KI
Chrom gesamt	μg/l	1,55	1,34	2,18	1,40	DIN EN ISO 11885;KI
Kupfer	μg/l	3,72	< 3	15,2	12,2	DIN EN ISO 11885;KI
Nickel	μg/l	1,75	< 1	3,78	4,54	DIN EN ISO 11885;KI
Quecksilber	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN 1483;KI
Zink	μg/l	11,6	< 5	25,8	16,6	DIN EN ISO 11885;KI
Kohlenwasserstoffindex	mg/l	< 0,1	0,30	8,7	< 0,1	DIN EN ISO 9377-2 H53;KI
BTX						
Benzol*	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	DIN 38407 F9;KI
Toluol*	μg/l	< 0,5	< 0,5	1,1	< 0,5	DIN 38407 F9;KI
Ethylbenzol*	μg/l	< 0,1	< 0,1	0,4	< 0,1	DIN 38407 F9;KI
o-Xylol*	μg/l	< 0,1	< 0,1	0,2	< 0,1	DIN 38407 F9;KI
m- und p-Xylol*	μg/l	< 0,2	0,5	0,4	< 0,2	DIN 38407 F9;KI
Isopropylbenzol (Cumol)	μg/l	< 0,2	< 0,2	0,5	< 0,2	DIN 38407 F9;KI
p-Isopropyltoluol	μg/l	< 0,2	< 0,2	< 0,2	< 0,2	DIN 38407 F9;KI
1,2,3-Trimethylbenzol	μg/l	< 0,2	< 0,2	2,1	< 0,2	DIN 38407 F9;KI
1,2,4-Trimethylbenzol	μg/l	< 0,2	2,9	4,9	< 0,2	DIN 38407 F9;KI
1,3,5-Trimethylbenzol	μg/l	< 0,2	< 0,2	1,3	< 0,2	DIN 38407 F9;KI
Styrol	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	DIN 38407 F9;KI
Durol	μg/l	< 0,2	0,7	2,8	< 0,2	DIN 38407 F9;KI
*Summe bestimmbarer BTEX	μg/l	0	0,508	2,07	0	DIN 38407 F9;KI

(DAkks

Seite 2 von 2 zum Prüfbericht Nr.: 14-38024 20140910-8801825

Probenbezeichnung	GWM 1	GWM 2	GWM 3	GWM 4	Methode
Probe-N	_	14-38024-002	14-38024-003	14-38024-004	
Parameter Einhe					
LHKW					
Dichlormethan µg	1 < 1	< 1	< 1	< 1	DIN EN ISO 10301;KI
trans-1,2-Dichlorethen µg		< 0,5	< 0,5	< 0,5	DIN EN ISO 10301;KI
cis-1.2-Dichlorethen µg		< 0.5	< 0,5	< 0.5	DIN EN ISO 10301;KI
Trichlormethan µg		< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,2-Dichlorethan µg	1 < 1	< 1	< 1	< 1	DIN EN ISO 10301;KI
1,1,1-Trichlorethan µg	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,1,2-Trichlorethan µg	1 < 1	< 1	< 1	< 1	DIN EN ISO 10301;KI
Tetrachlormethan µg	1 < 0,1	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
Trichlorethen µg		< 0.1	< 0.1	< 0,1	DIN EN ISO 10301;KI
Tetrachlorethen µg		< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,1-Dichlorethan	,	< 0,5	< 0,5	< 0,5	DIN EN ISO 10301;KI
1.1-Dichlorethen		< 0,5	< 0.5	< 0.5	DIN EN ISO 10301;KI
Summe best, LHKW		0	0	0	DIN EN ISO 10301;KI
PAK	·		0	0	DIT LIVIOU 10001,IV
Naphthalin µg	0,087	0,036	0,176	< 0.02	DIN 38407 F39;KI
Acenaphthylen µg		0,013	0,067	< 0,01	DIN 38407 F39;KI
Acenaphthen µg		0.625	0.317	< 0,01	DIN 38407 F39;KI
Fluoren µg		0,161	0,747	< 0,01	DIN 38407 F39;KI
Phenanthren µg		0,020	0,865	0,010	DIN 38407 F39;KI
Anthracen µg		0,012	0,116	0,005	DIN 38407 F39;KI
Fluoranthen µg		0,016	0,588	0,025	DIN 38407 F39;KI
Pyren µg		0,033	0,420	0,024	DIN 38407 F39;KI
Benzo[a]anthracen µg		< 0,005	0,124	0,012	DIN 38407 F39;KI
Chrysen µg		0,007	0,125	0,014	DIN 38407 F39;KI
Benzo[b]fluoranthen*	- i	0,003	0,093	0,020	DIN 38407 F39;KI
Benzo[k]fluoranthen*	· ·	< 0,002	0,072	0,014	DIN 38407 F39;KI
Benzo[a]pyren µg		< 0,005	0,102	0,019	DIN 38407 F39;KI
Dibenz[ah]anthracen µg	0,011	< 0,005	0,014	< 0,005	DIN 38407 F39;KI
Benzo[ghi]perylen* µg	0,044	< 0,01	0,062	0,015	DIN 38407 F39;KI
Indeno[1,2,3-cd]pyren* µg	0,040	< 0,005	0,057	0,014	DIN 38407 F39;KI
Summe best. PAK (EPA) µg	3,75	0,926	3,95	0,172	DIN 38407 F39;KI
PCB					
PCB-028 µg	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-052 µg	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-101 µg	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-118 µg	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-138 µg	<u> </u>	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-153 µg	,	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-180 µg		< 0,010	< 0,010	< 0,010	DIN EN ISO 6468;KI
PCB-194 µg		< 0,010	< 0,010	< 0,010	DIN EN ISO 6468;KI
Summe best. PCB-6	· · · · · · · · · · · · · · · · · · ·	0	0	0	DIN EN ISO 6468;KI
bestimmbare PCB ges. µg		0	0	0	DIN EN ISO 6468;KI

4-38024-002 Kommentar: DIN EN ISO 9377-2 H53 Geruch aromatisch

14-38024-003 Kommentar: DIN EN ISO 9377-2 H53 Geruch stark aromatisch

Kiel, den 10.09.2014

i. V. Dipl.-Ing. agr. Ulrich Soltau (Projektleiter)

UCL Umwelt Control Labor GmbH // Köpenicker Str. 59 // 24111 Kiel // Deutschland

Schiffswerft Otto Eberhardt Lange Straße 7-10 24399 Arnis

Ansprechpartner: Herr Ulrich Soltau
Telefon: 04316964130
Telefax: 0431-698787
E-Mail: ulrich.soltau@ucl-labor.de

Prüfbericht Nr.: 14-42067/1

Prüfgegenstand : 4 x Grundwasser

Auftraggeber : Schiffswerft Otto Eberhardt, Lange Straße 7-10, 24399 Arnis

Auftrags-Nr. / Datum

Projektbezeichnung

Probenahme am / durch : 10.09.2014 / UCL, Howaldt
Probeneingang am / durch : 10.09.2014 / UCL, Howaldt
Prüfzeitraum : 11.09.2014 - 19.09.2014

Probenbezeichnung		GWM 1	GWM 2	GWM 3	GWM 4	Methode
	Probe- Nr.	14-42067-001	14-42067-002	14-42067-003	14-42067-004	
Parameter	Einheit					
Analyse der Originalprobe						
Arsen	μg/l	14,6	< 5	5,67	< 5	DIN EN ISO 11885;KI
Blei	μg/l	< 5	< 5	< 5	13,4	DIN EN ISO 11885;KI
Cadmium	μg/l	< 0,4	< 0,4	< 0,4	< 0,4	DIN EN ISO 11885;KI
Chrom gesamt	μg/l	1,52	3,01	2,81	4,06	DIN EN ISO 11885;KI
Kupfer	μg/l	< 3	< 3	< 3	24,4	DIN EN ISO 11885;KI
Nickel	μg/l	2,42	< 1	2,82	6,07	DIN EN ISO 11885;KI
Quecksilber	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN 1483;KI
Zink	μg/l	10,3	< 5	7,70	21,0	DIN EN ISO 11885;KI
Kohlenwasserstoffindex	mg/l	< 0,1	< 0,1	3,0	< 0,1	DIN EN ISO 9377-2 H53;KI
BTX						
Benzol*	μg/l	< 0,5	< 0,5	0,7	< 0,5	DIN 38407 F9;KI
Toluol*	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	DIN 38407 F9;KI
Ethylbenzol*	μg/l	< 0,1	< 0,1	0,1	< 0,1	DIN 38407 F9;KI
o-Xylol*	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	DIN 38407 F9;KI
m- und p-Xylol*	μg/l	< 0,2	0,4	< 0,2	< 0,2	DIN 38407 F9;KI
Isopropylbenzol (Cumol)	μg/l	< 0,2	< 0,2	< 0,2	< 0,2	DIN 38407 F9;KI
p-Isopropyltoluol	μg/l	< 0,2	< 0,2	< 0,2	< 0,2	DIN 38407 F9;KI
1,2,3-Trimethylbenzol	μg/l	< 0,2	< 0,2	0,3	< 0,2	DIN 38407 F9;KI
1,2,4-Trimethylbenzol	μg/l	< 0,2	2,2	1,2	< 0,2	DIN 38407 F9;KI
1,3,5-Trimethylbenzol	μg/l	< 0,2	< 0,2	0,3	< 0,2	DIN 38407 F9;KI
Styrol	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	DIN 38407 F9;KI
Durol	μg/l	< 0,2	< 0,2	0,4	< 0,2	DIN 38407 F9;KI
*Summe bestimmbarer BTEX	μg/l	0	0,399	0,844	0	DIN 38407 F9;KI

Seite 2 von 2 zum Prüfbericht Nr.: 14-42067

20141119-9133815

Probenbezeichnung		GWM 1	GWM 2	GWM 3	GWM 4	Methode
	Probe- Nr.	14-42067-001	14-42067-002	14-42067-003	14-42067-004	
Parameter	Einheit					
Analyse der Originalprobe						
LHKW						
Dichlormethan	μg/l	< 1	< 1	< 1	< 1	DIN EN ISO 10301;KI
trans-1,2-Dichlorethen	μg/l	< 0,5	< 0,5	< 0.5	< 0.5	DIN EN ISO 10301;KI
cis-1,2-Dichlorethen	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	DIN EN ISO 10301;KI
Trichlormethan	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,2-Dichlorethan	μg/l	< 1	< 1	< 1	< 1	DIN EN ISO 10301;KI
1,1,1-Trichlorethan	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,1,2-Trichlorethan	μg/l	< 1	< 1	< 1	< 1	DIN EN ISO 10301;KI
Tetrachlormethan	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
Trichlorethen	μg/l	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
Tetrachlorethen	<u>μg/l</u>	< 0,1	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,1-Dichlorethan	<u>μg</u> /l	< 0,5	< 0,5	< 0,5	< 0,5	DIN EN ISO 10301;KI
1,1-Dichlorethen	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	DIN EN ISO 10301;KI
Summe best. LHKW	μg/l	0	0	0	0	DIN EN ISO 10301;KI
PAK	10					,
Naphthalin	μg/l	0,094	< 0,02	0,705	< 0,02	DIN 38407 F39;KI
Acenaphthylen	μg/l	0,046	< 0,01	0,071	< 0,01	DIN 38407 F39;KI
Acenaphthen	μg/l	0,548	0,412	0,391	< 0,01	DIN 38407 F39;KI
Fluoren	μg/l	0,213	0,123	0,890	< 0,01	DIN 38407 F39;KI
Phenanthren	μg/l	0,272	0,013	1,35	< 0,005	DIN 38407 F39;KI
Anthracen	μg/l	0,072	0,009	0,141	< 0,005	DIN 38407 F39;KI
Fluoranthen	μg/l	0,378	< 0,01	0,654	0,014	DIN 38407 F39;KI
Pyren	μg/l	0,298	< 0,005	0,439	0,014	DIN 38407 F39;KI
Benzo[a]anthracen	μg/l	0,111	< 0,005	0,117	< 0,005	DIN 38407 F39;KI
Chrysen	μg/l	0,127	< 0,005	0,127	0,007	DIN 38407 F39;KI
Benzo[b]fluoranthen*	μg/l	0,130	< 0,002	0,088	0,008	DIN 38407 F39;KI
Benzo[k]fluoranthen*	μg/l	0,090	< 0,002	0,066	0,006	DIN 38407 F39;KI
Benzo[a]pyren	μg/l	0,148	< 0,005	0,102	0,008	DIN 38407 F39;KI
Dibenz[ah]anthracen	μg/l	0,022	< 0,005	0,014	< 0,005	DIN 38407 F39;KI
Benzo[ghi]perylen*	μg/l	0,093	< 0,01	0,063	< 0,01	DIN 38407 F39;KI
Indeno[1,2,3-cd]pyren*	μg/l	0,088	< 0,005	0,061	< 0,005	DIN 38407 F39;KI
Summe best. PAK (EPA)	μg/l	2,73	0,557	5,28	0,057	DIN 38407 F39;KI
PCB						
PCB-028	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-052	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-101	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-118	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-138	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-153	μg/l	< 0,05	< 0,05	< 0,05	< 0,05	DIN EN ISO 6468;KI
PCB-180	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	DIN EN ISO 6468;KI
PCB-194	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	DIN EN ISO 6468;KI
Summe best. PCB-6	μg/l	0	0	0	0	DIN EN ISO 6468;KI
bestimmbare PCB ges.	μg/l	0	0	0	0	DIN EN ISO 6468;KI

14-42067-003 Kommentar: DIN EN ISO 9377-2 H53 Geruch aromatisch

Kiel, den 29.09.2014

i.V. Dipl. ing. agr. Ulrich Soltau (Projektleiter)

UCL Umwelt Control Labor GmbH // Köpenicker Str. 59 // 24111 Kiel // Deutschland

Schiffswerft Otto Eberhardt Lange Straße 7-10 24399 Arnis

Ansprechpartner: Herr Ulrich Soltau
Telefon: 04316964130
Telefax: 0431-698787
E-Mail: ulrich.soltau@ucl-labor.de

Prüfbericht Nr.: 14-51091/1

Prüfgegenstand : 5 x Wasser

Auftraggeber : Schiffswerft Otto Eberhardt, Lange Straße 7-10, 24399 Arnis

Auftrags-Nr. / Datum

Projektbezeichnung : Arnis, Schiffswerft Otto Eberhardt

 Probenahme am / durch
 : 31.10.2014 / UCL, Mähl

 Probeneingang am / durch
 : 31.10.2014 / UCL, Mähl

 Prüfzeitraum
 : 03.11.2014 - 10.11.2014

Probenbezeichnung		GWM 4	GWM 1	GWM 2	Methode
	Probe-Nr.	14-51091-001	14-51091-002	14-51091-003	
Parameter	Ein- heit				
Analyse der Originalprobe					
Arsen	μg/l	< 5	19,1	< 5	DIN EN ISO 11885;KI
Blei	μg/l	< 5	< 5	< 5	DIN EN ISO 11885;KI
Cadmium	μg/l	< 0,4	< 0,4	< 0,4	DIN EN ISO 11885;KI
Chrom gesamt	μg/l	2,41	3,25	1,18	DIN EN ISO 11885;KI
Kupfer	μg/l	7,56	< 3	< 3	DIN EN ISO 11885;KI
Nickel	μg/l	< 1	< 1	< 1	DIN EN ISO 11885;KI
Quecksilber	μg/l	< 0,1	< 0,1	< 0,1	DIN EN 1483;KI
Zink	μg/l	12,6	5,21	< 5	DIN EN ISO 11885;KI
Kohlenwasserstoffindex	mg/l	< 0,1	< 0,1	< 0,1	DIN EN ISO 9377-2 H53;KI
ВТХ					
Benzol*	μg/l	< 0,5	< 0,5	< 0,5	DIN 38407 F9;KI
Toluol*	μg/l	< 0,5	< 0,5	< 0,5	DIN 38407 F9;KI
Ethylbenzol*	μg/l	0,1	< 0,1	< 0,1	DIN 38407 F9;KI
o-Xylol*	μg/l	< 0,1	< 0,1	< 0,2	DIN 38407 F9;KI
m- und p-Xylol*	μg/l	0,6	0,4	1,0	DIN 38407 F9;KI
*Summe bestimmbarer BTEX	μg/l	0,8	0,4	1,0	DIN 38407 F9;KI

Seite 2 von 4 zum Prüfbericht Nr.: 14-51091 20141119-9133601

Probenbezeichnung		GWM 4	GWM 1	GWM 2	Methode
	Probe-Nr.	14-51091-001	14-51091-002	14-51091-003	
Parameter	Einheit				
Analyse der Originalprobe					
LHKW					
Dichlormethan	μg/l	< 1,0	< 1,0	< 1,0	DIN EN ISO 10301;Ki
trans-1,2-Dichlorethen	μg/l	< 0,50	< 0,50	< 0,50	DIN EN ISO 10301;K
cis-1,2-Dichlorethen	μg/l	< 0,50	< 0,50	< 0,50	DIN EN ISO 10301;K
Trichlormethan	μg/l	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;K
1,2-Dichlorethan	μg/l	< 1,0	< 1,0	< 1,0	DIN EN ISO 10301;K
1,1,1-Trichlorethan	μg/l	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;K
1,1,2-Trichlorethan	μg/l	< 1,0	< 1,0	< 1,0	DIN EN ISO 10301;Ki
Tetrachlormethan	μg/l	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;K
Trichlorethen	μg/l	< 0,1	< 0,1	< 0,1	DIN EN ISO 10301;K
Tetrachlorethen	μg/l	0,49	0,17	0,27	DIN EN ISO 10301;K
1,1-Dichlorethan	μg/l	< 0,50	< 0,50	< 0,50	DIN EN ISO 10301;K
1,1-Dichlorethen	μg/l	< 0,50	< 0,50	< 0,50	DIN EN ISO 10301;K
Vinylchlorid/Chlorethen	μg/l	< 1,0	< 1,0	< 1,0	DIN EN ISO 10301;K
Summe best. LHKW	μg/l	0,491	0,174	0,272	DIN EN ISO 10301;K
PAK					
Naphthalin	μg/l	< 0,02	0,087	0,021	DIN 38407 F39;KI
Acenaphthylen	μg/l	< 0,01	0,017	< 0,01	DIN 38407 F39;KI
Acenaphthen	μg/l	< 0,01	1,00	0,496	DIN 38407 F39;KI
Fluoren	μg/l	< 0,01	0,237	0,095	DIN 38407 F39;KI
Phenanthren	μg/l	0,008	0,043	0,021	DIN 38407 F39;KI
Anthracen	μg/l	< 0,005	0,016	0,010	DIN 38407 F39;KI
Fluoranthen	μg/l	0,022	0,033	< 0,01	DIN 38407 F39;KI
Pyren	μg/l	0,019	0,034	0,007	DIN 38407 F39;KI
Benzo[a]anthracen	μg/l	0,009	< 0,005	< 0,005	DIN 38407 F39;KI
Chrysen	μg/l	0,010	< 0,005	< 0,005	DIN 38407 F39;KI
Benzo[b]fluoranthen*	μg/l	< 0,020	< 0,004	< 0,002	DIN 38407 F39;KI
Benzo[k]fluoranthen*	μg/l	< 0,010	< 0,003	< 0,002	DIN 38407 F39;KI
Benzo[a]pyren	μg/l	< 0,020	< 0,005	< 0,005	DIN 38407 F39;KI
Dibenz[ah]anthracen	μg/l	< 0,005	< 0,005	< 0,005	DIN 38407 F39;KI
Benzo[ghi]perylen*	μg/l	< 0,01	< 0,01	< 0,01	DIN 38407 F39;KI
Indeno[1,2,3-cd]pyren*	μg/l	0,011	< 0,005	< 0,005	DIN 38407 F39;KI
Summe best. PAK (EPA)	μg/l	0,079	1,47	0,650	DIN 38407 F39;KI
*best. PAK nach TVO	μg/l	0,011	0	0	DIN 38407 F39;KI

14-51091-002 Kommentar: **DIN 38407 F39** BG anpassung aufgrund von Matrixstörung.

Seite 3 von 4 zum Prüfbericht Nr.: 14-51091

20141119-9133601

Probenbezeichnung		GWM 5	GWM 3	Methode
	Probe-Nr.	14-51091-004	14-51091-005	
Parameter	Einheit			
Analyse der Originalprobe				
Arsen	μg/l	< 5	9,67	DIN EN ISO 11885;KI
Blei	μg/l	< 5	< 5	DIN EN ISO 11885;KI
Cadmium	μg/l	< 0,4	< 0,4	DIN EN ISO 11885;KI
Chrom gesamt	μg/l	2,11	3,43	DIN EN ISO 11885;KI
Kupfer	μg/l	< 3	< 3	DIN EN ISO 11885;KI
Nickel	μg/l	< 1	3,14	DIN EN ISO 11885;KI
Quecksilber	μg/l	< 0,1	< 0,1	DIN EN 1483;KI
Zink	μg/l	< 5	6,49	DIN EN ISO 11885;KI
Kohlenwasserstoffindex	mg/l	< 0,1	0,17	DIN EN ISO 9377-2 H53;KI
BTX				
Benzol*	μg/l	< 0,5	2,8	DIN 38407 F9;KI
Toluol*	μg/l	< 0,5	< 0,5	DIN 38407 F9;KI
Ethylbenzol*	μg/l	< 0,1	1,1	DIN 38407 F9;KI
o-Xylol*	μg/l	< 0,1	0,1	DIN 38407 F9;KI
m- und p-Xylol*	μg/l	0,3	1,0	DIN 38407 F9;KI
*Summe bestimmbarer BTEX	μg/l	0,3	5,0	DIN 38407 F9;KI
LHKW				
Dichlormethan	μg/l	< 1,0	< 1,0	DIN EN ISO 10301;KI
trans-1,2-Dichlorethen	μg/l	< 0,50	< 0,50	DIN EN ISO 10301;KI
cis-1,2-Dichlorethen	μg/l	< 0,50	< 0,50	DIN EN ISO 10301;KI
Trichlormethan	μg/l	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,2-Dichlorethan	μg/l	< 1,0	< 1,0	DIN EN ISO 10301;KI
1,1,1-Trichlorethan	μg/l	< 0,1	< 0,1	DIN EN ISO 10301;KI
1,1,2-Trichlorethan	μg/l	< 1,0	< 1,0	DIN EN ISO 10301;KI
Tetrachlormethan	μg/l	< 0,1	< 0,1	DIN EN ISO 10301;KI
Trichlorethen	μg/l	< 0,1	< 0,1	DIN EN ISO 10301;KI
Tetrachlorethen	μg/l	< 0,1	0,16	DIN EN ISO 10301;KI
1,1-Dichlorethan	μg/l	< 0,50	< 0,50	DIN EN ISO 10301;KI
1,1-Dichlorethen	μg/l	< 0,50	< 0,50	DIN EN ISO 10301;KI
Vinylchlorid/Chlorethen	μg/l	< 1,0	< 1,0	DIN EN ISO 10301;KI
Summe best. LHKW	μg/l	0	0,162	DIN EN ISO 10301;KI

Seite 4 von 4 zum Prüfbericht Nr.: 14-51091 20141119-9133601

Probenbezeichnung		GWM 5	GWM 3	Methode
· ·	Probe-Nr.	14-51091-004	14-51091-005	
Parameter	Einheit			
Analyse der Originalprobe				
PAK				
Naphthalin	μg/l	0,065	0,609	DIN 38407 F39;KI
Acenaphthylen	μg/l	< 0,01	0,059	DIN 38407 F39;KI
Acenaphthen	μg/l	0,026	0,407	DIN 38407 F39;KI
Fluoren	μg/l	0,047	0,675	DIN 38407 F39;KI
Phenanthren	μg/l	0,081	0,467	DIN 38407 F39;KI
Anthracen	μg/l	0,009	0,064	DIN 38407 F39;KI
Fluoranthen	μg/l	0,018	0,434	DIN 38407 F39;KI
Pyren	μg/l	0,009	0,333	DIN 38407 F39;KI
Benzo[a]anthracen	μg/l	< 0,005	0,060	DIN 38407 F39;KI
Chrysen	μg/l	< 0,005	0,068	DIN 38407 F39;KI
Benzo[b]fluoranthen*	μg/l	< 0,002	0,042	DIN 38407 F39;KI
Benzo[k]fluoranthen*	μg/l	< 0,002	0,031	DIN 38407 F39;KI
Benzo[a]pyren	μg/l	< 0,005	0,049	DIN 38407 F39;KI
Dibenz[ah]anthracen	μg/l	< 0,005	0,005	DIN 38407 F39;KI
Benzo[ghi]perylen*	μg/l	< 0,01	0,023	DIN 38407 F39;KI
Indeno[1,2,3-cd]pyren*	μg/l	< 0,005	0,018	DIN 38407 F39;KI
Summe best. PAK (EPA)	μg/l	0,255	3,34	DIN 38407 F39;KI
*best. PAK nach TVO	μg/l	0	0,114	DIN 38407 F39;KI

14-51091-005 Kommentar: **DIN EN ISO 9377-2 H53** Geruch sauer

Kiel, dep 19.11.2014

i.V. Bipl.-Ing. agr. Ulrich Soltau (Projektleiter)